Masmoudi N, Nakanishi K. From the Klein-Gordon-Zakharov system to the nonlinear Schrdinger equation[J]. J Hyperbolic Diff Eqn,2005,2(4):975-1008.
[2]
Bellan P M. Fundamentals of Plasmas Physics[M]. Cambridge:Cambridge University Press,2006.
[3]
Bergacutee L, Bidacuteegaray B, Colin T. A perturbative analysis of the time-envelope approximation in strong Langmuir turbulence[J]. Physica,1996,D95:51-379.
[4]
Dendy R O. Plasma Dynamics[M]. Oxford:Oxford University Press,1990.
[5]
Thornhill S G, Haar D. Langmuir turbulence and modulational instability[J]. Phys Lett,1978,43:43-99.
[6]
Zakharov V E. Collapse of Langmuir waves[J]. Sov Phys JETP,1972,35:908-914.
[7]
Ozawa T, Tsutaya K,Tsutsumi Y. Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions[J]. Math Annalen,1999,313:127-140.
[8]
Guo B L. Global smooth solution for the system of Zakharov equations in nonhomogeneous medium[J]. Northeastern Math J,1990,6:379-390.
[9]
Ozawa T, Tsutaya K, Tsutsumi Y. Normal form and global solutions for the Klein-Gordon-Zakharov equations[J]. Annales De L’I H P,1995,C12(4):459-503.
[10]
Tsutaya K. Global existence of small amplitudes solutions for the Klein-Gordon-Zakharov equations[J]. Nonlinear Anal TMA,1996,27(12):1373-1380.
[11]
Gan Z H, Zhang J. Instability of standing waves for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions[J]. J Math Anal Appl,2005,307:219-231.
[12]
Gan Z H. Orbital instability of standing waves for the Klein-Gordon-Zakharov system[J]. Advanced Nonlinear Studies,2008,8:413-428.
[13]
Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations[J]. Israel J Math,1975,22(3/4):273-303.
[14]
Levine H A. Instability and non-existence of global solutions to nonlinear wave equations of the form Putt=-Au+F(u)[J]. Trans Am Math Soc,1974,192:1-21.
[15]
Zhang J, Gan Z H. Sharp conditions of Global existence for Klein-Gordon-Zakharov equations in three space dimensions[J]. Advances in Mathematics,2005,34(2):241-244.
[16]
Guo B L, Yuan G. Global smooth solution for the Klein-Gordon-Zakharov equations[J]. J Math Phys,1995,36(8):4119-4124.
[17]
Li J. Exact explicit travelling wave solutions for (n+1)-dimensional Klein-Gordon-Zakharov equations[J]. Chaos,Solitons and Fractals,2007,34:867-871.
[18]
Ohta M, Todorova G. Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system[J]. SIAM J Math Anal,2007,38(6):1912-1931.
[19]
Masmoudi N, Nakanishi K. Energy convergence for singular limits of Zakharov type system[J]. Invent Math,2008,172:535-583.
[20]
Gan Z H, Guo B L, Zhang J. Instability of standing wave, global existence and blowup for the Klein-Gordon-Zakharov system with different-degree nonlinearities[J]. J Diff Eqns,2009,246(10):4097-4128.
[21]
Zhang J. Sharp threshold for blowup and global existence in nonlinear Schrdinger equations under a harmonic potential[J]. Commun PDE,2005,30:1429-1443.
[22]
Gan Z H. Cross-constrained variational methods for the nonlinear Klein-Gordon equations with an inverse sequare potential[J]. Commun Pure Appl Anal,2009,8(5):1541-1554.
[23]
Gan Z H, Zhang J. Cross-constrained variational problem and the nonlinear Klein-Gordon equations[J]. Glasgow Math J,2008,50(3):467-481.
[24]
Gan Z H, Zhang J. Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system[J]. Commun Math Phys,2008,283:93-125.
[25]
Klainerman S, Machedon M. Space-time estimates for null forms and the local existence theorem[J]. Commun Pure Appl Math,1993,46(9):1221-1268.