全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

重新尺度化的Klein-Gordon-Zakharov系统的整体存在性

Keywords: 重新尺度化的Klein-Gordon-Zakharov系统,整体解,交叉强制变分方法,交叉不变流形

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一类交叉强制变分法来研究二维和三维空间中一类重新尺度化的Klein-Gordon-Zakharov系统的整体解.通过构造一类交叉强制变分问题,引入该系统柯西问题解流下的不变流形并利用伸缩变换,得到了该系统柯西问题解存在的一个充分条件.这个充分条件蕴涵着对于某些大初值,该系统柯西问题的整体解也存在.此外,证明了两个小初值准则,其回答了当初值为多小时,该系统柯西问题的整体解存在这个问题.

References

[1]  Masmoudi N, Nakanishi K. From the Klein-Gordon-Zakharov system to the nonlinear Schrdinger equation[J]. J Hyperbolic Diff Eqn,2005,2(4):975-1008.
[2]  Bellan P M. Fundamentals of Plasmas Physics[M]. Cambridge:Cambridge University Press,2006.
[3]  Bergacutee L, Bidacuteegaray B, Colin T. A perturbative analysis of the time-envelope approximation in strong Langmuir turbulence[J]. Physica,1996,D95:51-379.
[4]  Dendy R O. Plasma Dynamics[M]. Oxford:Oxford University Press,1990.
[5]  Thornhill S G, Haar D. Langmuir turbulence and modulational instability[J]. Phys Lett,1978,43:43-99.
[6]  Zakharov V E. Collapse of Langmuir waves[J]. Sov Phys JETP,1972,35:908-914.
[7]  Ozawa T, Tsutaya K,Tsutsumi Y. Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions[J]. Math Annalen,1999,313:127-140.
[8]  Guo B L. Global smooth solution for the system of Zakharov equations in nonhomogeneous medium[J]. Northeastern Math J,1990,6:379-390.
[9]  Ozawa T, Tsutaya K, Tsutsumi Y. Normal form and global solutions for the Klein-Gordon-Zakharov equations[J]. Annales De L’I H P,1995,C12(4):459-503.
[10]  Tsutaya K. Global existence of small amplitudes solutions for the Klein-Gordon-Zakharov equations[J]. Nonlinear Anal TMA,1996,27(12):1373-1380.
[11]  Gan Z H, Zhang J. Instability of standing waves for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions[J]. J Math Anal Appl,2005,307:219-231.
[12]  Gan Z H. Orbital instability of standing waves for the Klein-Gordon-Zakharov system[J]. Advanced Nonlinear Studies,2008,8:413-428.
[13]  Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations[J]. Israel J Math,1975,22(3/4):273-303.
[14]  Levine H A. Instability and non-existence of global solutions to nonlinear wave equations of the form Putt=-Au+F(u)[J]. Trans Am Math Soc,1974,192:1-21.
[15]  Zhang J, Gan Z H. Sharp conditions of Global existence for Klein-Gordon-Zakharov equations in three space dimensions[J]. Advances in Mathematics,2005,34(2):241-244.
[16]  Guo B L, Yuan G. Global smooth solution for the Klein-Gordon-Zakharov equations[J]. J Math Phys,1995,36(8):4119-4124.
[17]  Li J. Exact explicit travelling wave solutions for (n+1)-dimensional Klein-Gordon-Zakharov equations[J]. Chaos,Solitons and Fractals,2007,34:867-871.
[18]  Ohta M, Todorova G. Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system[J]. SIAM J Math Anal,2007,38(6):1912-1931.
[19]  Masmoudi N, Nakanishi K. Energy convergence for singular limits of Zakharov type system[J]. Invent Math,2008,172:535-583.
[20]  Gan Z H, Guo B L, Zhang J. Instability of standing wave, global existence and blowup for the Klein-Gordon-Zakharov system with different-degree nonlinearities[J]. J Diff Eqns,2009,246(10):4097-4128.
[21]  Zhang J. Sharp threshold for blowup and global existence in nonlinear Schrdinger equations under a harmonic potential[J]. Commun PDE,2005,30:1429-1443.
[22]  Gan Z H. Cross-constrained variational methods for the nonlinear Klein-Gordon equations with an inverse sequare potential[J]. Commun Pure Appl Anal,2009,8(5):1541-1554.
[23]  Gan Z H, Zhang J. Cross-constrained variational problem and the nonlinear Klein-Gordon equations[J]. Glasgow Math J,2008,50(3):467-481.
[24]  Gan Z H, Zhang J. Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system[J]. Commun Math Phys,2008,283:93-125.
[25]  Klainerman S, Machedon M. Space-time estimates for null forms and the local existence theorem[J]. Commun Pure Appl Math,1993,46(9):1221-1268.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133