全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二维空间中一类半线性波方程整体经典解的存在性

Keywords: 半线性波方程,整体解,生命跨度

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了二维空间中一类半线性波动方程的初值问题,运用逐步逼近法得到了这类波动方程初值问题在较弱条件下且当非线性项具有一般形式时C2整体经典解的存在唯一性,同时得到了相应情况下局部经典解较长的生命跨度.

References

[1]  Lai S Y. The global and local C2-solutions for the wave equation □u=G(ut,Du) in three space dimensions[J]. Acta Mathematica Scientia,2000,B20(4):495-503.
[2]  张艳丽,张珏. 一类四阶非线性波动方程整体经典解的存在性[J]. 四川师范大学学报:自然科学版,2007,30(1):53-57.
[3]  陈静,青音. 一类广义半线性电报方程整体解的存在性[J]. 四川师范大学学报:自然科学版,2008,31(1):34-37.
[4]  Kubota K. Existence of a global solution to semilinear wave equations with initial data of noncompact support in low space dimensions[J]. Hokkaido Math,1993,22(1):123-180.
[5]  Asakura F. Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimensions[J]. Communications in Partial Differential Equations,1986,11(13):1459-1487.
[6]  石立新. 一类具有非线性记忆的退化奇异抛物方程解的爆破[J]. 西南大学学报:自然科学版,2009,31(11):19-22.
[7]  罗显康,崔泽建. 一类非线性Klein-Gordon 方程整体解的存在性和爆破性[J]. 西华师范大学学报:自然科学版,2010,31(2):200-203.
[8]  魏赟赟. 带无界势的阻尼非线性Schrodinger 方程的整体存在性[J]. 四川师范大学学报:自然科学版,2010,33(4):450-454.
[9]  John F. Blow-up of solutions of nonlinear wave equations in three space dimensions[J]. Manuscripta Mathethatica,1979,28(1/3):235-268.
[10]  Schaeffer J. The equation utt-△u=|u|p for the critical values of p[J]. Proceedings of the Royal Society Edinburgh,1985,A101:31-44.
[11]  John F. Blow-up for quasi-linear wave equations in three space dimensions[J]. Communications on Pure and Applied Mathematics,1981,34(1):29-51.
[12]  Mathiroyuki T. Global existence for nonlinear wave equations with small data of noncompact support in three space dimensions[J]. Communications in Partial Differential Equations,1992,17(1/2):189-204.
[13]  Sideris T C. Global behavior of solutions to nonlinear wave equations in three space dimensions[J]. Communications in Partial Differential Equations,1983,12(8):1291-1323.
[14]  Runio H. Initial values problem of semilinear wave equations in three space dimensions[J]. Nonlinear Analysis,1996,26(5):941-970.
[15]  刘诗焕,钟越,黄文毅,等. 一类阻尼Boussinesq方程初边值问题的整体解[J]. 四川师范大学学报:自然科学版,2007,30(3):275-279.
[16]  王琴,张健,朱世辉. 一类带导数项的非线性Schrdinger方程整体解存在的最佳条件[J]. 四川师范大学学报:自然科学版,2009,32(1):17-21.
[17]  李红,宋长明. 一类具弱阻尼的奇性扰动Boussinesq型方程的渐近性质[J]. 四川师范大学学报:自然科学版,2008,31(5):558-561.
[18]  Ronald B G, John W Lee. Partial Differential Equations of Mathematical Physics and Intergral Equations[M]. New Jersey:Prentice Hall,1988.
[19]  刘诗焕,王丹华,朱景文,等. 一类半线性波系统的渐近理论[J]. 四川师范大学学报:自然科学版,2010,33(4):467-470.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133