全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Banach空间中广义混合变分不等式解的迭代算法

Keywords: 迭代算法,近似点算法,Bregman距离,仿单调算子,伪单调算子

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用R.S.Burachik和S.Scheimberg(SIAMJControlOptim,2001,39(5)1633-1649.)介绍的近似点算法和Bregman泛函,在自反Banach空间中建立了一类广义混合变分不等式解的迭代算法,证明了迭代序列是有定义的,并且弱收敛于广义混合变分不等式的解.同时,给出了广义混合变分不等式解的存在性的一个充分必要条件.

References

[1]  Burachik R S, Scheimberg S. A proximal point method for the variational inequality problem in Banach spaces\[J\]. SIAM J Control Optim,2001,39(5):1633-1649.
[2]  Zhu D L, Marcotte P. Cocoercivity and its role in the convergence of iterative schemes for solving variational inequalities\[J\]. SIAM J Optim,1996,6:714-726.
[3]  Burachik R S, Iusem A N. A generalized proximal point algorithm for the variational inequality problem in a Hilbert spaces\[J\]. SIAM J Optim,1998,8(1):197-216.
[4]  Farouq N E. Pseudomonotone variational inequalities:convergence of the auxiliary problem method\[J\]. J Optim Theory Appl,2001,111(2):305-326.
[5]  Hartman P, Stampacchia G. On some nonlinear elliptic differential functional equations\[J\]. Acta Math,1966,115:271-310.
[6]  万波,邓磊. 广义集值混合变分不等式的迭代算法\[J\]. 西南师范大学学报:自然科学版,2008,33(3):1-4.
[7]  彭再云,罗洪林. 广义收敛分析中的三步投影方法及其对变分不等式的应用\[J\]. 四川师范大学学报:自然科学版,2007,30(6):681-683.
[8]  叶明露,邓方平,黄穗. 变分不等式的一类梯度投影算法\[J\]. 四川师范大学学报:自然科学版,2008,31(1):42-46.
[9]  彭再云,雷鸣,汪达成,等. 希尔伯特空间中的广义松弛余强制变分不等式体系及带误差的三步投影方法\[J\]. 四川师范大学学报:自然科学版,2009,32(2):168-171.
[10]  Cohen G. Optimization by decomposition and coordination: A unified approach\[J\]. IEEE Transactions on Automatic Control,1978,23:222-232.
[11]  Cohen G. Auxiliary problem principle and decomposition of optimization problems\[J\]. J Optim Theory Appl,1980,32:277-305.
[12]  Cohen G, Zhu D L. Decomposition coordination methods in large-scale optimization problems: The nondifferentiable case and the use of augmented lagrangians\[J\]. Advances in Large-Scale Systems:Theory and Applications,1984,1:203-266.
[13]  Cohen G. Auxiliary problem principle extended to variational inequalities\[J\]. J Optim Theory Appl,1988,49:325-333.
[14]  赵恒军,邓磊. 弱广义混合变分不等式的辅助问题及迭代算法\[J\]. 西南师范大学学报:自然科学版,2006,31(5):15-19.
[15]  张菊,何中全. 一类广义集值拟变分不等式的迭代算法\[J\]. 贵州师范大学学报:自然科学版,2007,25(2):65-67.
[16]  Ding X P. General algorithm of solutions for nonlinear variational inequalities in Banach spaces\[J\]. Comput Math Appl,1997,34(9):131-137.
[17]  汪春阳. 一类广义随机非线性隐变分不等式组\[J\]. 四川师范大学学报:自然科学版,2008,31(5):505-507.
[18]  Censor Y, Iusem A N, Zenios A. An interior point method with Bregman functions for the variational inequality problem with paramonotone operators\[J\]. Math Programming,1998,81:373-400.
[19]  Iusem A N. On some properties of paramonotone operators\[J\]. J Convex Anal,1998,5:269-278.
[20]  Brezis H. Equations et inéquations nonlinéaires dans les espaces vectoriels en dualité\[J\]. Annales de L’Institut Fourier,1968,18:115-175.
[21]  Karamardian S. Complementarity problems over cones with monotone and pseudomonotone maps\[J\]. J Optim Theory Appl,1976,18:445-455.
[22]  Ding X P, Tan K K. A minimax inequality with application to existence of equilibrium point and fixed point theorems\[J\]. Colloquium Math,1992,63:233-247.
[23]  Aubin J P, Ekeland I. Applied Nonlinear Analysis\[M\]. Now York:A Wiley Interscience Publication,1984.
[24]  Rockafellar R T. Monotone operators and the proximal point algorithm\[J\]. SIAM J Control Optim,1976,14:877-898.
[25]  Browder F E. Nonlinear operators and nonlinear equations of evolution in Banach space\[J\]. Proceedings Sympos Pure Math,1976,18:1-308.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133