Huang N J, Fang Y P. A new class of general variational inclusions involving maximal ηmonotone mappings\[J\]. Pub Math Debrecen,2003,62:83-98.
[2]
Peng J W, Zhu D L. A new system of generalized mixed quasivatiational inclusions with (H, η)monotone operators\[J\]. J Math Anal Appl,2007,327:175-187.
[3]
Nadler S B. Multivalued contraction mapping\[J\]. Pacific J Math,1969,30:475-488.
[4]
Peng J W, Long X J. Comput Math Appl,2005,50:869-880.
[5]
Agarwal R P, Huang N J, Tan M Y. Appl Math Lett,2004,17:345-352.
[6]
Ding X P, Yao J C. Sensitivity analysis for a system of parametric mixed quasivariational inclusions\[J\]. J Nonlinear Convex Anal,2007,8(2):211-225.
[7]
Ding X P, Wang Z B. Sensitivity analysis for a system of parametric generalized mixed quasivariational inclusions involving (K,η)monotone mappings\[J\]. Appl Math Comput,2009,214:318-327.
[8]
Kazmi K R, Khan E A. Sensitivity Analysis for parametric generalized implicit quasivariationallike inclusions involving Pηaccretive mappings\[J\]. J Math Anal Appl,2008,337:1198-1211.
[9]
Lou J, He X F, He Z. Iterative methods for solving a system of variational inclusions involving Hηmonotone operators in Banach spaces\[J\]. Comput Math Appl,2008,55:1532-1541.
[10]
Ding X P, Wang Z B. System of setvalued mixed quasivariationallike inclusions involving Hηmonotone operators in Banach spaces\[J\]. Appl Math Mech,2009,30(1):1-12.
[11]
Ding X P, Feng H R. Algorithm for solving a new class of generalized nonlinear implicit quasivariational inclusions in Banach spaces\[J\]. Appl Math Comput,2009,208:547-555.
[12]
Feng H R, Ding X P. A new system of generalized nonlinear quasivariationallike inclusions with Amonotone operators in Banach spaces\[J\]. J Comput Appl Math,2009,225:365-373.
[13]
Petryshyn W V. A characterization of strictly convexity of Banach spaces and other uses of duality mappings\[J\]. J Funct Anal,1970,6:282-291.
[14]
Zhang Q B. Generalized implicit variationallike inclusion problems involving Gηmonotone mappings\[J\]. Appl Math Lett,2007,20:216-221.
[15]
Lan H Y. (A,η)accretive mappings and setvalued variational inclusions with relaxed cocoercive mappings in Banach spaces\[J\]. Appl Math Lett,2007,20:571-577.
[16]
Peng J W. On a new system of generalized mixed quasivariationallike inclusions with (H,η)accretive operators in real quniformly smooth Banach spaces\[J\]. Nonlinear Anal,2008,68:981-993.
[17]
Lim T C. On fixed point stability for setvalued contractive mappings with application to generalized differential equations\[J\]. J Math Anal Appl,1985,110:436-441.
[18]
Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems\[J\]. Math Student,1994,63:123-145.
[19]
Moudafi A, Théra M. Proximal and dynamical approaches to equilibrium problems\[C\]//Lecture Notes in Economics and Mathematical Systems. Berlin:Springer-Verlag,1999,477:187-201.
[20]
Moudafi A. Mixed equilibrium problems: sensitivity analysis and algorithmic aspects\[J\]. Comput Math Appl,2002,44:1099-1108.
[21]
Giannessi F, Maugeri A, Pardalos M. Equilibrium Problems: Nonsmooth Optimization and Variational inequality Models\[M\]. Dordrecht:Kluwer Academic,2001.
[22]
Giannessi F, Maugeri A. Variational Inequalities and Network Equilibrium Problems\[M\]. New York:Plenum,1995.
[23]
Noor M A. Multivalued general equilibrium problems\[J\]. J Math Anal Appl,2003,283:140-149.
[24]
Noor M A. Auxiliary principle technique for equilibrium problem\[J\]. J Optim Theory Appl,2004,122:371-386.
[25]
Noor M A. Generalized mixed quasiequilibrium problems with trifunction\[J\]. Appl Math Lett,2005,18:695-700.
[26]
Ding X P. Iterative algorithm of solutions for generalized mixed implicit equilibriumlike problems\[J\]. Appl Math Comput,2005,162(2):799-809.
[27]
Ding X P, Lin Y C, Yao J C. Predictorcorrector algorithms for solving generalized mixed implicit quasiequilibrium problems\[J\]. Appl Math Mech,2006,27(9):1157-1164.
[28]
Xia F Q, Ding X P. Predictorcorrector algorithms for solving generalized mixed implicit quasiequilibrium problems\[J\]. Appl Cpmput Math,2007,188(1):173-179.
[29]
Huang N J, Lan H Y, Cho Y J. Sensitivity analysis for nonlinear generalized mixed implicit equilibrium problems with nonmonotone setvalued mappings\[J\]. J Comput Appl Math,2006,196:608-618.
[30]
Kazmi K R, Khan F A. Existence and iterative approximation of solutions of generalized mixed equilibrium problems\[J\]. Comput Math Appl,2008,56:1314-1321.
[31]
Chang S S. Variational Inequalities and Complementary Problems: Theory and Applications\[M\]. Shanghai:Shanghai Scientific and Technical Press,1991.
[32]
Wang Z B, Ding X P. A new system of generalized mixed quasivariational like inclusions with relaxed (H,η)monotone operators in Banach spaces\[J\]. J Sichuan Normal University:Natural Science,2010,33(1):17-23.
[33]
Zeng L C. An iterative method for generalized nonlinear setvalued mixed quasivariational inequalities with Hmonotone mappings\[J\]. Comput Math Appl,2007,54:476-483.
[34]
Peng J W, Zhu D L. J Math Anal Appl,2007,327:175-187.
[35]
Nadler S B. Multivalued contraction mapping\[J\]. Pacific J Math,1969,30:475-488.