Marion M, Temam R. Nonlinear Galerkin method: The finite element case[J]. Numer Math,1990,57(3):205-226.
[2]
Martine M, Xu J C. Error estimates on a new nonlinear Galerkin method based on two-grid finite elements[J]. SIAM J Numer Anal,1995,32(4):1170-1184.
[3]
Ammi A A O, Marion M. Nonlinear Galerkin methods and mixed finite elements: Two-grid algrithms for the Navier-Stokesequations[J]. Numer Math,1994,68(2):189-213.
[4]
He Y N, Wang A W, Chen Z X, et al. An optimal nonlinear Galerkin method with mixed finite elements for steady Navier-Stokes equations[J]. Numer Meth Part Diff Eqns,2003,19(6):762-775.
Baiocchi C, Brezzi F, Franca L. Virtual bubble and Galerkin-least-squares type methods(G.L.S)[J]. Comput Meth Appl Mech Engrg,1993,105(1):125-141.
[7]
Douglas J, Wang J. An absolutely stabilized finite element method for the Stokes problem[J]. Math Comput,1989,52(186):495-508.
[8]
Brezzi F, Franca L, Hugnes T, et al. b=∫g[J]. Comput Meth Appl Mech Engrg,1997,145(3/4):329-339.
[9]
Brezzi F, Bristeau M, Franca L, et al. A relationship between stabilized finite element methods and the Galerkin method with bubble functions[J]. Comput Meth Appl Mech Engrg,1992,96(1):117-129.
[10]
Zhou T X, Feng M F. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J]. Math Comput,1993,60(202):531-543.
[11]
Luo Y, Feng M F. Discontinuous element pressure gradient stabilizations for compressible Navier-Stokes equations based on local projections[J]. Appl Math Mech,2008,29(2):171-183.
[12]
Bochev P B, Dohrmann C R, Gunzburger M D. Stabilization of low-order mixed finite elements for the Stokes equations[J]. SIAM J Numer Anal,2006,44(1):82-101.
[13]
He Y N, Li J. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J]. Appl Numer Math,2008,58(10):1503-1514.