全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

解Oseen方程的P1非协调四边形单元的涡旋粘性法

, PP. 632-638

Keywords: Oseen方程,涡旋粘性,非协调,四边形元

Full-Text   Cite this paper   Add to My Lib

Abstract:

解Oseen方程最主要的方法是混合有限元法,而这需要混合有限元空间满足离散的inf-sup(LBB)条件以及克服对流占优以防止数值解产生伪振荡.所采取的四边形网格上的P1-Q0元的非协调稳定化方法是通过L2局部投影添加涡旋粘性项来修正变分形式,增强其格式的稳定性,以绕开LBB条件,并克服对流占优.同时通过局部投影稳定化分析与最优误差估计,在理论上论证此方法的收敛性,使得P1非协调四边形元的应用更为广泛.

References

[1]  Huang P, Chen J R. Math Num Sinica,2010,32(1):81-96.
[2]  Douglas J, Wang J. An absolutely stabilized finite element method for the Stokes problem[J]. Math Comput,1989,52(186):495-508.
[3]  Zhou T X, Feng M F. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes[J]. Math Comput,1993,60(202):531-543.
[4]  Bochev P B, Dohrmann C R, Gunzburger M D. Stabilization of low-order mixed finite elements for the Stokes equation[J]. SIAM J Num Anal,2007,44(1):82-101.
[5]  He Y N, Li J. Appl Num Math,2008,58(10):1503-1514.
[6]  Li J, He Y N, Zhang X C. A new stabilized finite element method for the transient Navier-Stokes equations[J]. Comput Math Appl Mech Eng,2007,197(1/4):22-35.
[7]  Qin Y M, Feng M F. Appl Math Mech,2010,31(5):651-664.
[8]  卓凡,冯民富,张莉. Navier-Stokes 方程的局部压力梯度稳定化有限元方法分析[J]. 四川大学学报:自然科学版,2010,47(1):35-43.
[9]  Guermond J. Math Mod Num Anal,1999,33(6):1293-1316.
[10]  Layton W. A connection between subgrid scale eddy viscosity and mixed methods[J]. Appl Math Comput,2002,133(1):147-157.
[11]  Kaya S, Layton W. Subgrid-scale Eddy Viscosity Methods are Variational Multiscale Method[D]. Pittsburgh:University of Pittsburgh,2002.
[12]  John V, Kaya S. Adv Comput Math,2008,28:43-61.
[13]  John V, Kaya S. SIAM J Sci Comput,2005,26(5):1485-1503.
[14]  Kaya S, Rivière B. SIAM J Num Anal,2005,43(4):1572-1595.
[15]  Bai Y H, Feng M F. Appl Math Mech,2010,31(11):1360-1371.
[16]  Park C, Sheen D. Math Comput,2004,41(2):624-640.
[17]  王烈衡,许学军. 有限元方法的数学基础[M]. 北京:科学出版社,2004:36-41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133