全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广义集值向量变分不等式的例外簇

, PP. 495-499

Keywords: 广义集值向量变分不等式,C-例外簇,α-C-例外簇,存在性定理

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用例外簇的概念来研究变分不等式问题解的存在性的方法已变得十分流行.许多学者提出了各类例外簇的概念,并在此概念的基础上利用拓扑度或不动点理论得出许多变分不等式问题解的存在性的相关结论.但是这些研究仅限于单值变分不等式,而对于集值变分不等式的研究很少.因此针对Banach空间中广义集值向量变分不等式解存在性问题,提出了一类C-例外簇概念,并给出相应的解的存在性定理,得到择一型“广义集值向量变分不等式问题有解,否则存在C-例外簇”.

References

[1]  Smith T E. A solution condition for complementary problems, with an application to spatial price equilibrium[J]. Appl Math Comput,1984,15:61-69.
[2]  Walter R. Functional Analysis[M]. New York:McGraw-Hill,2003.
[3]  Aubin J P, Ekeland I. Applied Nonlinear Analysis[M]. New York:John Wiley & Sons,1984.
[4]  Isac G, Bulavaski V, Kalashnikov V. Exceptional families, topological degree, and complementarity problem[J]. J Global Optim,1999,14(2):207-225.
[5]  Isac G, Kalashnikov V. Exceptional family of elements, Leray-Schauder alternative, psedomonotone operatiors, and complementarity[J]. J Optim Theo Appl,2001,109:69-83.
[6]  Isac G, Li J L. Exceptional family of elements and the solvability of complementarity problems in uniformly smooth and uniformly convex Banach spaces[J]. J Zhejiang Univ:Sci,2005,A6(4):289-295.
[7]  Li J, Huang N J. Exceptinonal families of elements for set-valued mapping: an application to non-linear complementarity problems[J]. Appl Math Lett,2008,21:42-46.
[8]  Zhao Y B. Exceptional family and finite-dimensional variational inequality problems[J]. J Optim Theo Appl,2004,87:111-126.
[9]  Han J, Huang Z H, Fang S C. Solvability of variational inequality problem[J]. J Optim Theo Appl,2004,122:501-520.
[10]  Isac G, Zhao Y B. Exceptional family of elements and solvability of variational inequalities for unbounded set in infinite-dimensional Hilbert spaces[J]. J Math Anal Appl,2000,246:544-556.
[11]  Li J, Whitaker J. Exceptional family of elements and solvability of variational inequalities for mappings defined only on closed cone in Banach spaces[J]. J Math Anal Appl,2005,310:254-261.
[12]  Bianchi M, Hadjisavvas N, Schaible S. Exceptional families of elements for variational inequalities in Banach spaces[J]. J Optim Theo Appl,2006,129:23-31.
[13]  Zhou S Z, Bai M R. A new exceptional family of elements for a variational inequality problem on Hilbert space[J]. Appl Math Lett,2004,17:423-428.
[14]  Zhu W X, Fan L Y. Exceptional family and solution existence of variational inequality problems with set-valued mappings[J]. Appl Math Lett,2009,22:211-216.
[15]  Liu Z, He Y R. Exceptional family of elements for generalized variational inequalities[J]. J Global Optim,2010,48:465-471.
[16]  谭露琳. 空间中变分不等式问题解的存在性与例外簇[J]. 华南师范大学学报:自然科学版,2009,41(3):22-24.
[17]  刘智,何诣然. 集值变分不等式解的存在性问题[J]. 四川师范大学学报:自然科学版,2010,33(2):156-158.
[18]  韦丽兰,黄力人. 赋范空间关于强变分不等式的α-例外簇[J]. 华南师范大学学报:自然科学版,2011,43(1):43-45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133