全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锥连续集值优化问题解的下半连续性

, PP. 468-472

Keywords: 锥(上半)(下半)连续,(弱)有效解,本质(弱)有效解,通有性质

Full-Text   Cite this paper   Add to My Lib

Abstract:

给出锥连续集值优化问题的本质有效解及本质弱有效解概念,并在一致拓扑逼近意义下,利用研究一般稳定性及本质稳定性的扰动分析方法,对锥连续集值映射优化问题有效解和弱有效解映射下半连续的稳定性问题进行研究,证明了锥连续集值映射优化问题弱有效解本质当且仅当其可以由有效解任意逼近,以及有效解和弱有效解映射下半连续的一些等价描述新结果,推广了最近的有关有限维空间中连续向量值函数优化问题有效解和弱有效解的稳定性研究结果.

References

[1]  Maeda T. On optimization problems with set-valued objective maps[J]. Appl Math Comput,2010,217:1150-1157.2000 MSC:54C05; 74P99(编辑 李德华)
[2]  Truong Xuan Duc Ha. The Ekeland variational principle for Henig proper minimizers and super minimizers[J]. J Math Anal Appl,2010,364:156-170.
[3]  Gutierrez C, Lopez R, Novo V. Generalized asi-solutions in multiobjective optimization problems:existence results and optimality conditions[J]. Nonl Anal,2010,72:4331-4346.
[4]  Chuong T D, Huy N Q, Yao J C. Pseudo-Lipschitz property of linear semi-infinite vector optimization problems[J]. Euro J Operat Research,2010,200:639-644.
[5]  Le Anh Tuan, Gue Myung Lee, Pham Huu Sach. Upper-semi-continuity in a parametric general variational problem and application[J]. Nonl Anal,2010,72:1500-1513.
[6]  Chen C R, Li S J, Fang Z M. On the solution semicontinuity to a parametric generalized vector quasivariational inequality[J]. Comput Math Appl,2010,60:2417-2425.
[7]  Yu J. Essential weak efficient solution in multi-objective optimization problems[J]. J Math Anal Appl,1992,166:211-214.
[8]  Xiang S W, Zhou Y H. Continuity properties of solutions of vector optimization[J]. Nonlinear Anal,2006,64:2496-2506.
[9]  夏顺友,向淑文,胥德平. 锥上半连续集值优化解的上半连续性[J]. 贵州大学学报:自然科学版,2007,24(1):10-12.
[10]  夏顺友,向淑文,孙修勇,等. 集值映射的锥连续性及性质[J]. 贵州大学学报:自然科学版,2007,24(6):551-554.
[11]  Luc D T. Theory of Vector Optimization[M]. Berlin:Springer-Verlag,1989.
[12]  Klein E, Thompson A C. Theory of Correspondences[M]. New York:John Wiley & Sons,1984.
[13]  Fort M K Jr. Points of continuity of semi-continuous functions[J]. Publ Math Debrecen,1951,2:100-102.
[14]  胡毓达. 多目标规划有效性理论[M]. 上海:上海科学技术出版社,1994.
[15]  Xiang S W, Zhou Y H. On essential sets and essential components of efficient solutions for vector optimization problems[J]. J Math Anal Appl,2006,315:317-326.
[16]  Aubin J P, Ekeland I. Applied Nonlinear Analysis[M]. New York:John Wiley & Sons,1984.
[17]  Huang N J, Li J, Wu S Y. Optimality conditions for vector optimization oroblems[J]. J Optim Theory Appl,2009,142:323-342.
[18]  Fang Y P, Huang N J. Increasing-along-rays property, vector optimization and well-posedness[J]. Math Meth Oper Res,2007,65:99-114.
[19]  Zhang W Y, Li S J, Teo K L. Well-posedness for set optimization problems[J]. Nonlinear Anal,2009,71:3769-3778.
[20]  Durea M, Strugariu R. Necessary optimality conditions for weak sharp minima in set-valued optimization[J]. Nonlinear Anal,2010,73:2148-2157.
[21]  Chuong T D. Clarke coderivatives of efficient point multifunctions in parametric vector optimization[J]. Nonlinear Anal,2011,74:273-285.
[22]  Hernández E, Marín L R, Sama M. On solutions of set-valued optimization problems[J]. Comput Math Appl,2010,60:1401-1408.
[23]  Gutierrez C, Jimenez B, Novo V, et al. Strict approximate solutions in set-valued optimization with applications to the approximate Ekeland variational principle[J]. Nonlinear Anal,2010,73:3842-3855.
[24]  Maeda T. On optimization problems with set-valued objective maps[J]. Appl Math Comput,2010,217:1150-1157. The Lower Semi-continuity of Solutions of Optimization Problem for Cone-continuity Maps with Set-value XIA Shun-you1, XU De-ping2 (1. Department of Mathematics and Computer, Guizhou Normal College, Guiyang 550018, Guizhou; 2. College of Information Management, Chengdu University of Technology, Chengdu 610059, Sichuan) Abstract:In this paper, we first define the essential efficient solutions and the essential weakly efficient solutions of optimization problem for cone continuity maps with set-value, and then, under the approximation condition of uniform topology we research the lower semi-continuity stability of the efficient solutions and the weakly efficient solutions of optimization problem for cone continuity maps with set-value. Employing the approach of perturbation analysis for general stability and essential stability, we show that the weakly efficient solution is essential if and only if it is approached extremely by the efficient solutions, and the results of some equivalences of lower semi-continuity for the efficient solutions and the weakly efficient solutions of optimization problem for cone continuity maps with set-value are obtained. These new outcomes generalize the relevant results of the present researches concerning with optimization problem of continuity function with single vector-value on finite dimensional space. Key words:cone-upper(lower)-semi-continuity;(weakly)efficient solution; essential(weakly)efficient solution; generic continuity 2000 MSC:54C05; 74P99(编辑 李德华)
[25]  Truong Xuan Duc Ha. The Ekeland variational principle for Henig proper minimizers and super minimizers[J]. J Math Anal Appl,2010,364:156-170.
[26]  Gutierrez C, Lopez R, Novo V. Generalized εV:py0∈F(y0),px∈F(x),py0-px∈K}为闭集,则x*为本质解,当且仅当对x*的任意邻域U,存在(-overx)∈S(F)∩U,使得:对任意p(-overx)∈F((-overx))∩E(F(X))有F-1(p(-overx))∩(X\ 参考文献 [1] Yu J. Essential weak efficient solution in multi-objective optimization problems[J]. J Math Anal Appl,1992,166:211-214.
[27]  Xiang S W, Zhou Y H. Continuity properties of solutions of vector optimization[J]. Nonlinear Anal,2006,64:2496-2506.
[28]  夏顺友,向淑文,胥德平. 锥上半连续集值优化解的上半连续性[J]. 贵州大学学报:自然科学版,2007,24(1):10-12.
[29]  夏顺友,向淑文,孙修勇,等. 集值映射的锥连续性及性质[J]. 贵州大学学报:自然科学版,2007,24(6):551-554.
[30]  Luc D T. Theory of Vector Optimization[M]. Berlin:Springer-Verlag,1989.
[31]  Klein E, Thompson A C. Theory of Correspondences[M]. New York:John Wiley & Sons,1984.
[32]  Fort M K Jr. Points of continuity of semi-continuous functions[J]. Publ Math Debrecen,1951,2:100-102.
[33]  胡毓达. 多目标规划有效性理论[M]. 上海:上海科学技术出版社,1994.
[34]  Xiang S W, Zhou Y H. On essential sets and essential components of efficient solutions for vector optimization problems[J]. J Math Anal Appl,2006,315:317-326.
[35]  Aubin J P, Ekeland I. Applied Nonlinear Analysis[M]. New York:John Wiley & Sons,1984.
[36]  Huang N J, Li J, Wu S Y. Optimality conditions for vector optimization oroblems[J]. J Optim Theory Appl,2009,142:323-342.
[37]  Fang Y P, Huang N J. Increasing-along-rays property, vector optimization and well-posedness[J]. Math Meth Oper Res,2007,65:99-114.
[38]  Zhang W Y, Li S J, Teo K L. Well-posedness for set optimization problems[J]. Nonlinear Anal,2009,71:3769-3778.
[39]  Durea M, Strugariu R. Necessary optimality conditions for weak sharp minima in set-valued optimization[J]. Nonlinear Anal,2010,73:2148-2157.
[40]  Chuong T D. Clarke coderivatives of efficient point multifunctions in parametric vector optimization[J]. Nonlinear Anal,2011,74:273-285.
[41]  Hernández E, Marín L R, Sama M. On solutions of set-valued optimization problems[J]. Comput Math Appl,2010,60:1401-1408.
[42]  Gutierrez C, Jimenez B, Novo V, et al. Strict approximate solutions in set-valued optimization with applications to the approximate Ekeland variational principle[J]. Nonlinear Anal,2010,73:3842-3855.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133