Deng Y B, Hu X Y, Zhang L. The solvability conditions for the inverse eigenvalue problem of the symmetrizable matrices[J]. J Comput Appl Math,2004,163:101-106.
[6]
Zhou F Z, Hu X Y, Zhang L. The solvability conditions for the inverse problems of symmetric ortho-symmetric matrices[J]. Appl Math Comput,2004,154:153-166.
Liu Z Y, Tan Y X, Tian Z L. Generalized inverse eigenvalue problem for centrohermitian matrices[J]. J Shanghai Univ:Eng Ed,2004,8(4):448-453.
[9]
Yuan S F, Liao A P, Lei Y. Inverse eigenvalue problems of tridiagonal symmetric matrices and tridiagonal bisymmetric matrices[J]. Comput Math Appl,2008,55:2521-2532.
Yamada I, Ogura N, Yamashita Y, et al. Quadratic optimization of fixed points of nonexpansive mappings in Hilbert space[J]. Num Funct Anal Optim,1998,19:165-190.
[13]
Yamada I. The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings[C]//Butnariu D, Censor Y, Reich S. Inherently Parallel Algorithm for Feasibility and Optimization and Their Applications. New York:Elsevier,2001:473-504.
[14]
Yamada I, Ogura N, Shirakawa N. A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems[C]//Nashed Z, Scherzer O. Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics,2002,313:269-305.
[15]
Slavakis K, Yamada I, Sakaniwa K. Computation of symmetric positive definite Toeplitz matrices by the hybrid steepest descent method[J]. Signal Processing,2003,83:1135-1140.
[16]
Sun H M, Hasegawa H, Yamada I. Multidimensional associative memory neural network to recall nearest pattern from input[C]//Nonlinear Signal and Image Processing. Sapporo:IEEE-Eurasip,2005:39.
[17]
Paulo J, Ferreira S G. The existence and uniqueness of the minimum norm solution to certain linear and nonlinear problems[J]. Signal Processing,1996,55:137-139.