Li H, Mee R W. Better foldover fractions for resolution III 2k-p designs[J]. Technometrics,2002,44:278-283.
[2]
Li W, Lin D K J. Optimal foldover plans for two-level fractional factorial designs[J]. Technometrics,2003,45:142-149.
[3]
Li W, Lin D K J, Ye K Q. Optimal foldover plans for non-regular orthogonal designs[J]. Technometrics,2003,45:347-351.
[4]
Jacroux M. Maximal rank minimum aberration foldover plans for 2m-k fractional factorial designs[J]. Metrika,2007,65:235-242.
[5]
Wang B, Robert G M, John F B. A note on the selection of optimal foldover plans for 16- and 32-run fractional factorial designs[J]. J Statistical Planning and Inference,2010,140:1497-1500.
[6]
Robert G M, John F B. Optimal foldover plans for two-level fractional factorial split-plot designs[J]. J Quality Technology,2008,40:227-240.
[7]
Jacroux M. Reverse foldovers for blocked 2m-k fractional factorial designs[J]. Communications in Statistics:Theory and Methods,2011,40:2799-2808.
[8]
Li F, Mike J. Optimal foldover plans for blocked 2m-k fractional factorial designs[J]. J Statistical Planning and Inference,2007,137:2439-2452.
[9]
Ai M Y, Xu X, Wu C F. Optimal blocking and foldover plans for regular two-level designs[J]. Statistica Sinica,2010,20:183-207.
[10]
Fang K T, Lin D K J, Qin H. A note on optimal foldover design[J]. Statistics Probability Letters,2003,62:245-250.
[11]
Ou Z J, Chatterjee K, Qin H. Lower bounds of various discrepancies on combined designs[J]. Metrika,2011,74:109-119.
[12]
Lei Y J, Qin H, Zou N. Some lower bounds of centered L2-discrepancy on foldover designs[J]. Acta Mathematica Scientia,2009,A30(6):1555-1561.