全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

组合设计的离散偏差的下界

, PP. 447-450

Keywords: 离散偏差,组合设计,下界,最优折叠反转方案,均匀性

Full-Text   Cite this paper   Add to My Lib

Abstract:

效应别名是部分因析设计不可避免的问题.由于别名的因子效应会造成数据分析的困扰,因此如何有效的解除别名效应的模糊性是部分因析设计中的重要问题.折叠反转是解除因子别名效应的经典方法.在两种特殊的情形下分别得到了两水平部分因子设计的组合设计的离散偏差的下界,数值例子说明这些下界是紧的.因此,这些下界可以作为寻找饱和正交设计的最优折叠反转方案的标准,并给出了用基于离散偏差的均匀性准则来寻找最优折叠反转方案的理论依据.

References

[1]  Li H, Mee R W. Better foldover fractions for resolution III 2k-p designs[J]. Technometrics,2002,44:278-283.
[2]  Li W, Lin D K J. Optimal foldover plans for two-level fractional factorial designs[J]. Technometrics,2003,45:142-149.
[3]  Li W, Lin D K J, Ye K Q. Optimal foldover plans for non-regular orthogonal designs[J]. Technometrics,2003,45:347-351.
[4]  Jacroux M. Maximal rank minimum aberration foldover plans for 2m-k fractional factorial designs[J]. Metrika,2007,65:235-242.
[5]  Wang B, Robert G M, John F B. A note on the selection of optimal foldover plans for 16- and 32-run fractional factorial designs[J]. J Statistical Planning and Inference,2010,140:1497-1500.
[6]  Robert G M, John F B. Optimal foldover plans for two-level fractional factorial split-plot designs[J]. J Quality Technology,2008,40:227-240.
[7]  Jacroux M. Reverse foldovers for blocked 2m-k fractional factorial designs[J]. Communications in Statistics:Theory and Methods,2011,40:2799-2808.
[8]  Li F, Mike J. Optimal foldover plans for blocked 2m-k fractional factorial designs[J]. J Statistical Planning and Inference,2007,137:2439-2452.
[9]  Ai M Y, Xu X, Wu C F. Optimal blocking and foldover plans for regular two-level designs[J]. Statistica Sinica,2010,20:183-207.
[10]  Fang K T, Lin D K J, Qin H. A note on optimal foldover design[J]. Statistics Probability Letters,2003,62:245-250.
[11]  Ou Z J, Chatterjee K, Qin H. Lower bounds of various discrepancies on combined designs[J]. Metrika,2011,74:109-119.
[12]  Lei Y J, Qin H, Zou N. Some lower bounds of centered L2-discrepancy on foldover designs[J]. Acta Mathematica Scientia,2009,A30(6):1555-1561.
[13]  黄勇,李强,李乃花. 扭曲重模代数的量子化[J]. 四川师范大学学报:自然科学版,2012,35(2):194-198.
[14]  王胜军,韩亚洲. 各向异性Heisenberg群上一类强Hardy型不等式及其应用[J]. 四川师范大学学报:自然科学版,2011,34(1):38-42.
[15]  陈广生,丁宣浩. 一个具有多参数的逆向Hilbert型不等式[J]. 四川师范大学学报:自然科学版,2011,34(5):538-545.
[16]  何祖国. r-凸函数与几个重要不等式的联系及应用[J]. 四川师范大学学报:自然科学版,2010,33(6):703-706.
[17]  Hichernell F J. A generalized discrepancy and quadrature error bound[J]. Mathematics of Computation,1998,67:299-322.
[18]  Lin D K. A new class of supersaturated designs[J]. Technometrics,1993,35:28-31.
[19]  Zhang A J, Fang K T, Li R, et al. Majorization framework for balanced lattice designs[J]. Ann Statist,2005,33:2837-2853.
[20]  Wu C F, Hamada M. Experiments Planning, Analysis, and Parameter Design Optimization[M]. New York:John Wiley,2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133