全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带分布时滞的双系统微分方程的全局吸引集

, PP. 712-715

Keywords: 吸引集,有界性,非负矩阵

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过积分不等式技巧以及非负矩阵的相关性质,获得了一类带分布时滞的双系统微分方程解有界和存在全局吸引集的充分条件,并给出了零解全局渐近稳定的条件,推广了一些早期的相关结果,并给出例子进行验证.

References

[1]  Kelley W G, Peterson A C. Difference Equations: An Introduction with Applications[M]. New York:Academic Press,1991.
[2]  Teman R. Infinity-Dimensional Dynamical Systems in Mechanics and Physics[M]. 2nd. New York:Springer-Verlag,1997.
[3]  Kolmanovskii V, Myshkis A D. Introduction to the Theory and Applications of Functional Differential Equations[M]. Dordrecht:Kluwer Academic Publishers,1999:285-288. [4] Lasalle J P. The Stability of Dynamical Systems[M]. Philadelphia:SIAM,1976.
[4]  Xu D Y. Integro-differential equations and delay integral inequalities[J]. Tohoku Math J,1992,44:365-378.
[5]  Yang Z G, Xu D Y. Mean square exponential stability of impulsive stochastic difference equations[J]. Appl Math Lett,2007,20:938-945.
[6]  龙述君. 具有分布时滞的脉冲Cohen-Grossberg神经网络的指数稳定性[J]. 四川师范大学学报:自然科学版,2009,32(1):68-71.
[7]  Zhao H Y. Global stability of bidirectional associative memory nueral networks with distributed delays[J]. Phys Lett,2002,A297:182-190.
[8]  赵洪涌,崔伟业. 一类中立型Hopfield神经网络的全局吸引集[J]. 生物数学学报,2003,18(2):197-202.
[9]  Xiang L, Teng L Y, Wu H. A new delay vector integral inequality and its application[J]. J Inequal Appl,2010,ID:927059.
[10]  Xu D Y,Yang Z C. Attracting and invariant sets for a class of impulsive functional differential equations[J]. J Math Anal Appl,2007,329:1036-1041.
[11]  向丽,滕玲莹. 一类泛函微分方程的全局吸引集[J]. 四川大学学报:自然科学版,2012,49(1):55-58.
[12]  Horn R A, Johnson C R. Matrix Analysis[M]. Cambridge:Cambridge University Press,1985.
[13]  Berman A, Plemmons R J. Nonnegative Matrices in Mathematical Sciences[M]. New York:Academic Press,1979.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133