全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多线性分数次积分算子在Herz型Hardy空间中的有界性

, PP. 721-725

Keywords: 多线性算子,分数次奇异积分,Herz型Hardy空间,原子

Full-Text   Cite this paper   Add to My Lib

Abstract:

分数次积分算子是Riesz位势算子在高维空间中的推广,具有重要的应用背景,寻找具有合适光滑性条件的核函数使得多线性算子保持有界在算子领域的研究中具有重要地位.运用Sharp极大函数点态估计及Herz型Hardy空间的中心原子分解技术,证明了一类满足某种Hrmander条件的多线性分数次奇异积分算子是乘积Herz型Hardy空间到Herz空间有界的,该条件比经典条件具有更弱的光滑性,进而推广了经典分数次奇异积分算子的有界性结论.

References

[1]  Coifman R R, Meyer Y. Commutateurs d’integrales singulires et operateurs multilineaires[J]. Ann Inst Fourier,1978,28(3):177-202.
[2]  Shi Y, Tao X. Multilinear Riesz potentiona operators on Herz-type spaces and generalized Morrey spaces[J]. Hokkaido Math J,2009,38(4):635-662.
[3]  洪勇. Lp(Rn+,ω(x))上的Hardy型奇异积分算子的范数[J]. 四川师范大学学报:自然科学版,2011,34(1):47-50.
[4]  孙爱文,束立生. 广义分数次积分算子在加权Herz型Hardy空间的有界性[J]. 纯粹数学与应用数学,2011,27(2):204-209.
[5]  林燕. 多线性算子的有界性[J]. 数学物理学报,2008,A28(4):595-602.
[6]  Lacy M, Thiele C. Estimates on the bilinear Hilbert transform for 1 [3] Lacy M, Thiele C. On Calderon’s conjecture[J]. Ann Math,1999,149:475-496. [4] Grafakos L, Torres R. Multilinear Caleron-Zygmund theory[J]. Adv Math,2002,165:124-16.
[7]  Grafakos L, Torres R. Maximal operator and weighted norm inequalities for multilinear singular integrals[J]. Indiana Univ Math J,2002,51:1261-1276.
[8]  Grafakos L, Kalton N. Calderon-Zygmund operators on Hardy spaces[J]. Collet Math,2001,52:169-179.
[9]  Kening C, Stein E. Multilinear estimats and fractional integration[J]. Math Reseach Lett,1999,6:1-15.
[10]  Lian J L, Wang W H. Boundedness for commutator of multilinear fractional integral operators[J]. Adv Math(Chinese),2009,38:368-374.
[11]  Chen X, Xue Q Y. Weighted estimates for a class of multilinear fractional type operators[J]. J Math Anal Appl,2010,362(2):355-373.
[12]  Yu X, Chen J C. Endpoint estimates for commutators of multilinear fractional integral operators[J]. Acta Math Sinica:Engl Ser,2010,26(3):433-444.
[13]  Xue Q Y. Weighted estimates for the iterated commutators of multilinear maximal and fractional type operators[J/OL]. http://arxiv.org/abs/1105.4471.
[14]  Takeshi L, Enji S, Yoshihiro S, et al. Sharp bounds for multilinear fractional integral operators on Morrey type spaces[J]. Positivity,2011,DOI:10.1007/s11117-011-0129-5.
[15]  Si Z Y. λ-central BMO estimates for multilinear commutators of fractional integrals[J]. Acta Math Sinica:Engl Ser,2010,26(11): 2093-2108.
[16]  Takeshi L, Enji S, Yoshihiro S, et al. Multilinear fractional integrals on morrey spaces[J]. Acta Math Sinica:Engl Ser,2012,28(7):1375-1384.
[17]  Wu Q. Weighted estimater for multilinear Calderon-Zygmund operators[J]. Adv Math(Chinese),2004,33:333-342.
[18]  Lu S Z, Yang D C, Hu G E. Herz Type Spaces and Their Applications[M]. Beijing:Science Press,2008:20-71.
[19]  Lu S Z, Yang D C. The weighted Herz-type Hardy spaces and its applications[J]. Sci Chin,1995,A38(6):662-673.
[20]  刘岚喆,陆善镇. 次线性算子在Herz型Hardy空间上的有界性[J]. 数学学报,2002,45(5):833-840.
[21]  付立志,郭田芬,马韵新. 一类分数次积分算子在Herz型Hardy空间上的有界性[J]. 纯粹数学与应用数学,2008,24(2):341-345.
[22]  兰家诚,陆善镇. 分数次积分在加权Herz型Hardy空间的有界性[J]. 数学研究与评论,2005,25(2):311-318.
[23]  唐林,杨大春. 多线性算子在Herz型Hardy空间上的有界性[J]. 数学学报,2001,44(5):861-686.
[24]  Lu S Z. Herz type spaces[J]. Adv Math(Chinese),2004,33(3):257-272.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133