Boussinesq J. Theorie des ondes et de remous qui se propagent le long d’un canal rectangularly horizontal, et communiquant au liquide contene dans ce canal des vitesses sensiblement pareilles de la surface au fond[J]. J Math Pures Appl,1872,17(2):55-108.
[2]
Bona J, Sachs R. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation[J]. Commun Math Phys,1988,118(1):15-29.
[3]
Liu Y. Strong instability of solitary-wave solutions of a generalized Boussinesq equation[J]. J Diff Eqns,2000,164(2):223-239. [4] Varlamov V V. On the Cauchy problem for the damped Boussinesq equation[J]. Diff Int Eqns,1996,9(3):619-634.
Lai S Y, Wu Y H. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation[J]. Discrete and Continuous Dynamical System,2003,3(3):401-408.
[6]
Wang S B, Xue H X. Global solution for a generalized Boussinesq uequation[J]. Appl Math Comput,2008,204(1):130-136.
[7]
Song C, Yang Z. Global solution to the Cauchy problem of the nonlinear double dispersive wave equation with strong damping[J]. Dynamics PDE,2009,6(4):367-383.
[8]
Lai S Y. Different physical structures of solutions for a generalized Boussinesq wave equation[J]. J Comput Appl Math,2009,231(1):311-318.
Feng H Y P, Li S J, Lu L Q. Global existence of solution to nonlinear wave equation with damping and source terms[J]. Acta Anal Funct Appl,2010,12(1):1-5.