全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类微分系统在三次多项式扰动下的极限环估计

, PP. 558-562

Keywords: Mel’nikov函数,极限环,Hamilton系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

计算了一类二次Hamilton微分系统的一阶Mel’nikov函数,通过此方法对该系统在三次多项式扰动下分岔的极限环个数进行了估计,得到其Poincare分岔最多可产生3个极限环.

References

[1]  Li J B. Hilbert’s 16-th problem and bifurcations of plannar polynomial vector fields[J]. Int J Bifur Chao,2003,13(1):47-106.
[2]  Dumorter F, Roussarie R, J Sotomayor. Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part: The cusp case of codimension 3[J]. Ergodic Theory and Dynamical Systems,1987,7(3):375-413.
[3]  Dumorter F, Li C Z, Zhang Z F. Unfolding of a quadratic integrable system with two centers and two undounded heteroclinic loops[J]. J Diff Eqns,1997,136:146-193.
[4]  Cheng S H, Feng J W. Bifurcation in perturbed Hamiltonian system with two centers[J]. J Math,1996,16(3):307-311.
[5]  Atabaigi A, Nyamoradi N, Zangeneh H R Z. The number of limit cycles of a quintic polynomial system[J]. Comput Math Appl,2009,57:677-684.
[6]  Asheghi R, Zangeneh H R Z. Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop[J]. Nonlinear Anal,2008,68:2957-2976.
[7]  Asheghi R, Zangeneh H R Z. Bifurcations of limit cycles from quintic Hamiltonian systems with an eye-figure loop(II)[J]. Nonlinear Anal,2008,69:4143-4162.
[8]  张芷芬,李承治,郑志明,等. 向量场分岔理论基础[M]. 北京:高等教育出版社,1997:111-113.
[9]  Song Y. The Poincare bifurcation of a class of quadratic systems[J]. Pure Appl Math,2004,20(3):291-294.
[10]  Tan X X, Feng E M, Shen B Q. Study on the Poincare bifurcation of quadratic system with two centers and two unbounded heteroclinic loops once again[J]. Acta Math Appl Sic,2004,27(2):300-309.
[11]  岳喜顺,孙巍,曾宪武. Bogdanov-Takens系统的一类三次扰动(I)[J]. 数学年刊,2008,29(2):261-272.
[12]  周俊. LV型电子商贸网站竞争系统的全局结构[J]. 四川师范大学学报:自然科学版,2009,32(3):276-280.
[13]  黎明. 一类二次可逆系统Abel积分零点个数的线性估计[J]. 四川师范大学学报:自然科学版,2009,32(6):727-730.
[14]  Asheghi R, Zangeneh H R Z. Bifurcations and distribution of limit cycles which appear from two nests of periodic orbits[J]. Nonlinear Anal,2010,73:2398-2409.
[15]  Wang J H, Xiao D M. On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems with one nilpotent saddle[J]. J Diff Eqns,2011,250:2227-2243.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133