全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

FC-空间中的上下界平衡问题

, PP. 516-520

Keywords: 平衡问题,FC-凸包,FC-空间,紧闭值,紧开下截口

Full-Text   Cite this paper   Add to My Lib

Abstract:

上下界平衡问题是向量平衡问题中的一个很有意义的问题,它是G.Isac,V.M.Sechgal,S.P.Singh(IndianJMath,1999,41(1)25-31.)公开提出的,并逐渐成为非线性分析中重要且有效的工具.建立了关于FC-凸包的新的非空交定理,通过应用这个非空交定理和不动点定理,解决了上下界平衡问题和拟平衡问题解的存在问题,这些结论在更弱的假设条件下回答了以上所提到的公开问题.从而改进了最近文献中的相关结果.

References

[1]  Blum E, Oettli W. From optimiztion and variational inequalities to equilibirum problems\[J\]. Math Student,1994,63:123-145.
[2]  Giannenessi F. Vector variational inequalities and vector equilibrium\[C\]//Mathmatical Theories Nonconvex Optimization and Its Applications. Dordrecht:Kluwer Academic,2000.
[3]  Harker P T, Pang J S. Finite-dimensional variatonal inequality and nonlinear complementarity problem:A survey of theory, algorithms and applications\[J\]. Math Programming,1990,B48(2):161-220.
[4]  George Y X Z. KKM Theory and Application in Nonlinear Analysis\[M\]. New York:Marcle Decker,1999.
[5]  Ding X P. Constrained multiobjective games in locally convex H-space\[J\]. Appl Math Mech,2003,24(5):441-449.
[6]  Ding X P. New systems of generalized vector quasi-equilibrium problems in product FC-spaces\[J\]. J Glob Optim,2010,46:133-146.
[7]  Lin L J, Liu Y H. Existence theroems for systems of generalized vector quasi-equilibrium problems and optimization problems\[J\]. J Optim Theo Appl,2006,130(3):461-475.
[8]  Lin L J. Systems of generalized quasivariational inclusions problems with applications to variational analysis and optimizations\[J\]. J Glob Optim,2007,38(1):21-39.
[9]  Peng J W, Lee H W J, Yang X M. On system of genralized vector quasi-equilibrium problems with set-valued maps\[J\]. J Glob Optim,2006,36(1):139-158.
[10]  Ding X P. The generalized game and the system of generalized vector-quilibrium problems in locally FC-uniform spaces\[J\]. J Glob Optim,2010,46:133-146.
[11]  Ding X P. Mathematical programs with system of generalized vector quasi-equilibrium constrains in FC-spaces\[J\]. Acta Math Sci,2010,B30(4):1257-1268.
[12]  Lin L J, Huang Y J. Generalized vector quasi-equilibrium problems with application to common fixed point theorems and optimization problems\[J\]. Nonlinear Anal,2007,66(6):195-312.
[13]  Lin L J, Hsu H W. Existence theorems of systems of vector quasi-equilibrium problems and mathematical programs with equilibrium constraint\[J\]. J Glob Optim,2007,37(2):195-213.
[14]  Lin L J. System of genralized vector quasi-equilibrium problems with applications to fixed point theroems for a family of nonexpansive multivalued mappings\[J\]. J Glob Optim,2006,34:15-32.
[15]  Ding X P, Lai T C, Yu S J. System of generalized vector quasi-variational inclusions problems and application to mathematical programs\[J\]. Taiwanese J Math,2009,13(5):1515-1536.
[16]  Ding X P. Pareto equilibriua for generalized constrained multiobjective games in FC-spaces without local convexity structure\[J\]. Noninear Anal,2009,71:5229-5237.
[17]  Ding X P, Lee C S, Yao J C. Generalized constrained multiobjective games in locally FC-uniform spaces\[J\]. Appl Math Mech,2008,29(3):301-309.
[18]  Isae G, Sehgal V M, Singh S P. An alternate version of variational inequality\[J\]. Indian J Math,1999,41(1):25-31.
[19]  Li J. A lower and upper bounds of a variational inequality\[J\]. Appl Math Lett,2000,13(5):47-51.
[20]  Chadli O, Chiang Y, Yao T C. Equilibrium problems with lower and upper bounds\[J\]. Appl Math Lett,2002,15:327-331.
[21]  Ding X P. Equilibrium problems with lower and upper bounds in topological spaces\[J\]. Acta Math Sci,2005,25(4):658-662.
[22]  丁协平. 拓扑空间内有上下界的拟平衡问题\[J\]. 四川师范大学学报:自然科学版,2004,27(6):551-558.
[23]  张从军. 一类具有上下界的均衡问题\[J\]. 数学学报,2005,48(2):293-298.
[24]  Ding X P. Maximal elements of GKKM-majorized mappings in product FC-spaces and application (I)\[J\]. Nonlinear Anal,2007,67(3):963-973.
[25]  Ding X P, Wang L. Fixed points, minimax inequalities and equilibria of noncompact abstract economies in FC-spaces\[J\]. Nonlinear Anal,2008,67:730-746.
[26]  Ding X P. Maximal element theorems in product FC-spaces and generalized games\[J\]. J Math Anal Appl,2005,305:29-42.
[27]  丁协平. 拟平衡问题解的存在性\[J\]. 四川师范大学学报:自然科学版,1998,21(3):603-608.
[28]  朴勇杰. FC-空间上的不动点定理和相交定理及其应用\[J\]. 应用泛函分析学报,2010,12(3):228-233.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133