Fan J S, Wu H W. Exponential decay for the semilinear wave equation with source teams[J]. Electron J Diff Eqns,2006,82:1-6.
[2]
Cavalcant M M. Exponential decay for the solution of semilinear viscoelastic wave equation with localized damping[J]. Electron J Diff Eqns,2002,2002:1-14.
[3]
Ma Q Z, Zhong C K. Existence of strong global attractors for hyperbolic equation with linear memory[J]. Appl Math Comput,2004,157:745-758.
[4]
Gerbi S, Said-Hohari B. Exponential decay for solutions to semilinear damped wave equation[J]. Discrete Contin Dyn Syst,2012,S5(3):559-566.
[5]
Gazzola F, Squassina M. Global solution and finite time blow up for damped semilinear wave equations[J]. Ann Inst Henri Poincare: Non-Linear Anal,2006,23(2):185-207.
[6]
Zuazua E. Exponential decay for the semilinear wave equation with locally distributed damping[J]. Commun PDE,1990,15:205-235.
Ball J. Remarks on blow up and nonexistence theorems for nonlinear evolution equations[J]. Math Oxford,1977,28:473-486.
[9]
Teman R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York:Springer-Verlag,1997.
[10]
Ikehata R. Local energy decay for linear wave equations with variable coefficients[J]. J Math Anal Appl,2005,306:330-348.
[11]
Esquivel-Avila J A. The dynamics of a nonlinear wave equation[J]. J Math Anal Appl,2003,279:135-150.
[12]
Linares F, Pazoto A F. On the exponential decay of the critical generalized Korteweg-Devries equation with localized damping[J]. Proc Am Math Soc,2007,135:1515-1522.
[13]
Quintanilla R. Exponential decay in mixtures with localized dissipative term[J]. Appl Math Lett,2005,18:1381-1388.
[14]
Nakao M. Decay of solutions of the wave equation with some localized dissipations[J]. Nonlinear Anal,1997:3775-3784.
[15]
Ikehata R. Two dimensional exterior mixed problem for semilinear damped wave equations[J]. J Math Anal Appl,2005,301:366-377.
[16]
Debussche A. Hausdorff dimension of random invariant set[J]. J Math Pure Appl,1998,77:967-988.
[17]
Da Prato G, Zabczczyk J. Stochastic Equations in Infinite Dimensions[M]. Cambridge:Cambridge University Press,1992.
[18]
Guo B, Gao H. Finite dimentional behavior of generalized Ginzburg-Landau equation[J]. Prog Nat Sci,1994,4:423-434.