全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

抽象凸锥度量空间上集值映射的逼近连续选择及应用

, PP. 521-524

Keywords: 抽象凸空间,连续选择,不动点,广义博弈,Nash平衡

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用抽象凸空间满足的H0条件和紧集的有限覆盖及与之相应的单位分解构造标准单纯形上的连续映射,从而由Brouwer不动点定理证明了抽象凸锥度量空间上具有邻域抽象凸值的锥度量上半连续集值映射的一个锥度量逼近连续选择定理,并由此得到具有邻域抽象凸值的锥度量上半连续集值映射的一个不动点定理,然后将此不动点定理应用于博弈论,通过构造锥度量上半连续最优反应集值映射得到抽象凸锥度量策略空间上的n人非合作广义博弈Nash平衡的一个存在性结果.

References

[1]  Xiang S W, Yang H. Some properties of abstract convexity structures on topological spaces[J]. Nonlinear Anal,2007,67:803-808.
[2]  Xiang S W, Xia S Y. A further characteristic of abstract convexity structures on topological spaces[J]. J Math Anal Appl,2007,335:716-723.
[3]  Horvath C D. Contractibility and generalized convexity[J]. J Math Anal Appl,1991,156:341-357.
[4]  Park S, Kim H. Admissible classes of multifunctions on generalized convex spaces[J]. Proc Nat Sci SNU,1993,18:1-21.
[5]  van de Vel M. A selection theorem for topological convex structures[J]. Trans Am Math Soc,1993,336:463-496.
[6]  Ding X P, Kim W A, Tan K K. A new minimax inequality on H-spaces with applications[J]. Bull Austral Math Soc,1990,41:457-473.
[7]  Michael E. Convex structures and continuous selections[J]. Canad J Math,1959,11:556-575.
[8]  Huang L G, Zhang X. Cone metric spaces and fixed point theorems of contractive mappings[J]. J Mat Anal Appl,2007,332(2):1468-1476.
[9]  Klim D, Wardowski D. Dynamic processes and fixed points of set-valued nonlinear contractions in cone metric spaces[J]. Nonlinear Anal:TMA,2009,71:5170-5175.
[10]  Huang X J, Zhu C X, Wen X. Common fixed point theorem for four non-self mappings in cone metric spaces[J]. Fixed Point Theory and Applications,2010,14:1-15.
[11]  夏顺友,黄南京. 锥度量空间上的半连续集值映射的连续性[J]. 辽宁工程技术大学学报:自然科学版,2012,31(2):280-283.
[12]  邓方平,王磊. 乘积FC-空间上的重合点定理[J]. 四川师范大学学报:自然科学版,2009,32(3):297-300.
[13]  文开庭. μ0-超凸空间中的连续选择定理及其对抽象经济的应用[J]. 四川师范大学学报:自然科学版,2008,31(4):397-401.
[14]  丁协平. 局部FC-空间内Himmelberg型不动点定理的推广[J]. 四川师范大学学报:自然科学版,2006,29(1):1-6.
[15]  Huang N J, Li J, Wu S Y. Optimality conditions for vector optimization problems[J]. J Optim Theor Appl,2009,142:323-342.
[16]  Tan K K, Yu J. Existence theorem of Nash equilibria for non-cooperative N-person games[J]. Int J Game Theory,1995,24:217-222.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133