全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类具有非线性边界条件的非线性抛物方程解的爆破现象(英)

, PP. 583-589

Keywords: 非线性边界条件,爆破,解的爆破时间

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究一类具有非线性边界条件的非线性抛物方程解的爆破现象.建立了方程解有限时间爆破和全局存在的一些条件.另外,当解发生爆破时,通过构造一阶微分不等式,得到爆破时间的下界.

References

[1]  Enache C. Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary conditions[J]. Appl Math Lett,2011,24:288-292.
[2]  Enache E. Lower bounds for blow-up time in some non-linear parabolic problems under Neumann boundary conditions[J]. Glasgow Math J,2011,53:569-575.
[3]  Payne L E, Philippin G A. Blow-up in a class of non-linear parabolic problems with time-dependent coefficients under Robin type boundary conditions[J]. Appl Anal,2012,91:2245-2256
[4]  Payne L E, Song J C. Lower bounds for blow-up time in a nonlinear parabolic problem[J]. J Math Anal Appl,2009,354:394-396.
[5]  Payne L E, Schaefer P W. Blow-up phenomena for some nonlinear parabolic systems[J]. Int J Pure Appl Math,2008,48:193-202.
[6]  Payne L E, Song J C. Blow-up and decay criteria for a model of chemotaxis[J]. J Math Anal Appl,2010,367:1-6.
[7]  米永生,穆春来. 一类具有耦合非线性边界流的多孔介质方程组解的整体存在性与爆破[J]. 四川师范大学学报:自然科学版,2011,34(4):458-465.
[8]  李玉环,郑攀,穆春来. 一类带有慢衰减初值的双重退化抛物方程的解的生命跨度[J]. 四川师范大学学报:自然科学版,2011,34(5):740-745.
[9]  Ball J M. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[J]. Quart J Math Oxford,1977,28:473-486.
[10]  Kielhofer H. Existenz und Regularitiat von Lsungen semilinearer parabolischer Anfangs-Randwertprobleme[J]. Math Z,1975,142:131-160.
[11]  Straughan B. Explosive Instabilities in Mechanics[M]. Berlin:Springer-Verlag,1998.
[12]  Quittner R, Souplet P. Superlinear Parabolic Problems Blow-up, Global Existence and Steady States[M]. Basel:Birkhauser,2007.
[13]  Levine H A. Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficients[J]. Math Ann,1975,214:205-220.
[14]  Galaktionov V A, Vazquez J L. The problem of blow-up in nonlinear parabolic equations[J]. Discrete Cont Dyn Syst,2002,8(2):399-433.
[15]  Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions[J]. J Math Anal Appl,2007,328:1196-1205.
[16]  Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Neumann conditions[J]. Appl Anal,2006,85:1301-1311.
[17]  Payne L E, Schaefer P W. Blow-up phenomena for some nonlinear parabolic problems[J]. Appl Anal,2008,87:699-707.
[18]  Payne L E, Schaefer P W. Bounds for the blow-up time for heat equation under nonlinear boundary condition[J]. Proc Roy Soc Edin,2009,A139:1289-1296.
[19]  Payne L E, Philippin G A, Vernier Piro S. Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I[J]. Z Angew Math Phys,2010,61:999-1007.
[20]  Chen S. Global existence and blow-up of solutions for a parabolic equation with a gradient term[J]. Proc Am Math Soc,2001,129:975-981.
[21]  Payne L E, Philippin G A, Schaefer P W. Bounds for blow-up time in nonlinear parabolic problems[J]. J Math Anal Appl,2008,338:438-447.
[22]  Payne L E, Philippin G A, Vernier Piro S. Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II[J]. Nonlinear Anal,2010,73:971-978.
[23]  Payne L E, Philippin G A, Schaefer P W. Blow-up phenomena for some nonlinear parabolic problems[J]. Nonlinear Anal,2008,69:3495-3502.
[24]  Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions[J]. J Math Anal Appl,2007,328:1196-1205.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133