Flath D E. Introduction to Number Theory\[M\]. New York:Wiley,1989.
[2]
Guy R K. Unsolved Problem in Number Theory\[M\]. 3rd. New York:Springer-Verlag,2004:4-10.
[3]
Epstein P. Zur auflosbarkeit der gleichung x2-Dy2=1\[J\]. J Reine Angew Math,1934,171:243-252.
[4]
Grytczuk A, Luca F, Wojtowicz M. The negative Pell equation and Pythagorean triples\[J\]. Proc Japan Acad,2000,76(1):91-94.
[5]
McLaughlin J. Multi-variable polynomial solutions to Pell equation and fundamental units in real quadratic fields\[J\]. Pacific J Math,2003,210:335-49.
[6]
Lenstra Jr H W. Solving the Pell equation\[J\]. Notices Am Math Soc,2002,49:182-92.
[7]
Li K Y. Pell equation\[J\]. Mathematical Excalibur,2001,6:1-4.
[8]
Matthews K. The Diophantine equation x2-Dy2=N,D>0\[J\] .Expositiones Math,2000,18:323-331.
[9]
Mollin R A. A simple criterion for solvability of both X2-DY2=c and X2-DY2=-c\[J\]. New York J Math,2001,7:87-97.
[10]
Mollin R A, Cheng K, Goddard B. The Diophantine equation AX2-BY2=C solved via continued fractions\[J\]. Acta Math Univ Comenianae,2002,71:121-138.
[11]
Mollin R A, Poorten A J, Williams H C. Halfway to a solution of x2-Dy2=-3\[J\]. J de Theorie des Nombres Bordeaux,1994,6:421-457.
[12]
Stevenhagen P. A density conjecture for the negative Pell equation, computational algebra and number theory\[J\]. Math Appl,1992,325:187-200.
[13]
Cohn J H E. The Diophantine equations x(x+1)(x+2)(x+3)=2y(y+1)(y+2)(y+3)\[J\]. Pacific J Math,1971,37:33l-335.
[14]
Dujella A, Franusic Z. On differences of two squares in some quadratic fields\[J\]. Rocky Mountain J Math,2007,37(2):429-440.