Hopfield J. Neurons whith graded reponse have collective computational properties like those of two-state neurons\[J\]. Proc Nat Academy Sci,1984,81:3088-3092.
[2]
Zhou Q H, Wan L. Exponential stability of stochastic delayed Hopfield neural networks\[J\]. Appl Math and Comput,2008,199(1):84-89.
[3]
Lu H T, Chung F L, He Z Y. Some sufficient conditions for global exponential stability of delayed Hopfield neural networks\[J\]. Neural Networks,2004,17:537-544.
[4]
Yang D G, Liao X F, Chen Y. New delay dependent global asymptotic stability criteria of delayed Hopfield neural networks\[J\]. Nonlinear Anal:RWA,2008,9(5):1894-1904.
[5]
Zhou J, Li S Y, Yang Z G. Global exponential stability of Hopfield neural networks with distributed delays\[J\]. Appl Math Model,2009,33(3):1513-1520.
[6]
Zhang W N. A weak condition of globally asymptotic stability for neural networks\[J\]. Appl Math Lett,2006,19:1210-1215.
[7]
Zhang Q, Wei X P, Xu J. Delay-dependent global stability condition for delayed Hopfield neural networks\[J\]. Nonlinear Anal:RWA,2007,8(3):997-1002.
[8]
Wei X P, Zhou D S, Zhang Q. On asymptotic tability of discrete-time non-autonomous delayed Hopfield eural networks\[J\]. Comput Math Appl,2009,57(11/12):1938-1942.
[9]
Lisena B. Exponential stability of Hopfield neural networks with impulses\[J\]. Nonlinear Analysis:RWA,2011,12(4):1923-1930.
[10]
Wu H Q. Global exponential stability of Hopfield neural networks with delays and inverse Lipschitz neuron activations\[J\]. Nonlinear Anal:RWA,2009,10(4):2297-2306.
[11]
Zhang H G, Wang G. New criteria of global exponential stability for a class of generalized neural networks with time-varying delays\[J\]. Neurocomputing,2007,70(13/14/15):2486-2494.
[12]
Chu T G, Zhang C S. New necessary and sufficient conditions for absolute stability of neural networks\[J\]. Neural Networks,2007,20(1):94-101.
[13]
Wang B, Zhong S, Liu X. Asymptotical stability criterion on neural networks with multiple time-varying delays\[J\]. Appl Math Comput,2008,195(2):809-818.
[14]
Syed A M, Balasubramaniam P. Stability analysis of uncertain fuzzy Hopfield neural networks with time delays\[J\]. Communications in Nonlinear Science and Numerical Simulation,2009,14(6):2776-2783.
[15]
Xu B J, Liu X, Teo K L. Asymptotic stability of impulsive high-order Hopfield type neural networks\[J\]. Comput Math Appl,2009,57(11/12):1968-1977.
[16]
Liu Y G, You Z S. Stability analysis for the generalized Hopfield neural networks with multi-level activation functions\[J\]. Neurocomputing,2008,71(16/17/18):3595-3601.
[17]
Fu X L, Li X D. Global exponential stability and global attractivity of impulsive Hopfield neural networks with time delays\[J\]. J Comput Appl Math,2009,231(1):187-199.
[18]
Xu B J, Wang Q, Liao X X. Stability analysis of high-order Hopfield type neural networks with uncertainty\[J\]. Neurocomputing,2008,71(4/5/6):508-512.
Michel A N, Farrell J A, Porod W. Qualitative analysis of neural networks\[J\]. IEEE Trans Circuits Syst,1989,36:229-243.
[21]
Yang H, Dillon T S. Exponential stability and oscillation of Hopfield graded response neural network\[J\]. IEEE Trans Neural Networks,1994,5:719-729.
[22]
Guan Z H, Chen G R, Yi Q. On equilibria, stability, and instability of Hopfield neural networks\[J\]. IEEE Trans Neural Networks,2000,11:534-540.
[23]
Zhang Y T, Qi L. New results for globally asymptotic stability and instability of recurrent neural networks\[C\]//Control Conference,2007. CCC 2007. Chinese. New York:IEEE Conference Publications,2007:162-166.
[24]
Rouche N, Habets P, Laloy M. Stability Theory by Liapunov’s Direct Methord\[M\]. New York:Springer-Verlag,1977:171-185.