全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

余纯投射模与CPH环

, PP. 198-201

Keywords: 余纯投射模,CPH环,Gorenstein投射模

Full-Text   Cite this paper   Add to My Lib

Abstract:

设R是环,R-模M称为余纯投射模,是指对任意平坦模F,都有Ext1R(M,F)=0.证明了余纯投射模或者是投射模,或者其平坦维数不低于2.还引入CPH环的概念,证明了R是CPH环当且仅当平坦模的内射维数不超过1,当且仅当R的每个理想是余纯投射的.

References

[1]  Rotman J J. An Introduction to Homological Algebra\[M\]. New York:Academic Press,1979.
[2]  Enochs E, Hernandez J M, Valle A D. Coherent rings of finite weak global dimension\[J\]. Proc Am Math Soc,1998,126:1611-1620.
[3]  Fu X H, Zhu H Y, Ding N Q. On copure projective modules and copure projective dimensions\[J\]. Commun Algebra,2012,40(1):343-359.
[4]  Kasch F. Modules and Rings\[C\]//London Mathematical Society Monographs. London:Academic Press,1982,17:377.
[5]  Yin H Y, Eang F G, Zhu X S, et al. w-Modules over commutative rings\[J\]. J Korean Math Soc,2011,48(1):207-222.
[6]  王芳贵,汪明义,杨立英. 交换环上的极大性内射模\[J\]. 四川师范大学学报:自然科学版,2010,33(3):277-285.
[7]  赵松泉,王芳贵,陈翰林. 交换环上的w-模是平坦模\[J\]. 四川师范大学学报:自然科学版,2012,35(3):364-366.
[8]  王芳贵. 有限表现型模与w-凝聚环\[J\]. 四川师范大学学报:自然科学版,2010,33(1):1-9.
[9]  Mimouni A. Integral domains in which each ideal is a w-ideal\[J\]. Commun Algebra,2005,33:1345-1355.
[10]  Mahdou N, Tamekkante M. On (strongly) Gorenstein (semi)hereditary rings\[J\]. Arabian J Sci Eng,2011,36:431-440.
[11]  Bennis D. Weak Gorentein global dimension\[J\]. Internet Electron J Algebra,2010,8:140-152.
[12]  Lazard D. Autour de la platitude\[J\]. France Bull Math Soc,1969,97:81-128.
[13]  Stenstrm B. Coherent rings and FP-injective modules\[J\]. J London Math Soc,1970,2:323-329.
[14]  Bennis D, Mahdou N. First, second and third change of rings theorems for Corenstein homological dimensions\[J\]. Commun Algebra,2010,38:3837-3850.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133