全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lotka-Volterra系统的计算机辅助分析

, PP. 138-146

Keywords: Lotka-Volterra系统,动力学行为,稳定性,极限环

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述利用符号计算处理Lotka-Volterra系统周期轨道和平衡点的存在性和稳定性问题.考虑吴(特征列)方法在捕食系统方面的应用.利用实根分离算法来判断正平衡点的唯一性从而得到单调系统的整体稳定性.通过证明多项式系统的正定性得到离散扩散系统的整体稳定性.通过Liapunov方法和实根分离算法构造Kolmogorov系统的小扰动极限环.最后考虑三维系统极限环的算法化构造.

References

[1]  陆征一,周义仓. 数学生物学进展[M]. 北京:科学出版社,2006.
[2]  陆征一,王稳地. 生物数学前沿[M]. 北京:科学出版社,2008.
[3]  王东明. 消去法及其应用[M]. 北京:科学出版社,2002.
[4]  吴文俊. 数学机械化[M]. 北京:科学出版社,2003.
[5]  陆征一,何碧,罗勇. 多项式系统实根分离算法及其应用[M]. 北京:科学出版社,2004.
[6]  (美)Hofbauer J, Sigmund K. 进化对策与种群动力学[M]. 陆征一,罗勇,译. 成都:四川科学技术出版社,2002.
[7]  Lu Z, Takeuchi Y. Qualitative stability and global stability for Lotka-Volterra systems[J]. J Math Anal Appl,1994,182:260-268.
[8]  Lu Z, Takeuchi Y. Global dynamical behavior for Lotka-Volterra systems with a reducible interaction matrix[J]. J Math Anal Appl,1995,193:559-572.
[9]  陈兰荪,宋新宇,陆征一. 数学生态学模型与研究方法[M]. 成都:四川科学技术出版社,2003.
[10]  Liu L, Lu Z, Wang D M. The structure of LaSalle’s invariant set for Lotka-Volterra systems[J]. Science in China,1991,A34:783-790.
[11]  Lu Z. On the LaSalle’s invariant set for five-dimensional Lotka-Volterra raprey-predator chain systems[J]. Acta Math Sinica,1989,5:214-218.
[12]  Luo Y, Lu Z. Stability analysis for Lotka-Volterra systems based on an algorithm of real root isolation[J]. J Comput Appl Math,2007,201(2):367-373.
[13]  Lu Z, Takeuchi Y. Permanence and global stability for cooperative Lotka-Volterra diffusion systems[J]. Nonlinear Anal:TMA,1992,19:963-975.
[14]  Takeuchi Y, Lu Z. Permanence and global stability for competitive Lotka-Volterra diffusion system[J]. Nonlinear Anal,1995,24:91-104.
[15]  Hofbauer J, So J W, Takeuchi Y. Globel stability of competition in patchy environment[J]. Diff Eqns Dyn Syst,1996,4:213-224.
[16]  Smith H L. Systems of ordinary differential equations which generate an order preserving flow: A survey of results[J]. SIAM Rev,1988,30:87-113.
[17]  Lu Z, Wang G J. The positive definiteness of a class of polynomials from the global stability analysis of Lotka-Volterra systerms[J]. Comput Math Appl,1999,38:19-27.
[18]  Coste J, Peyraud J, Coullet P. Asymptotic behavior in the dynamics of competing species[J]. SIAM J Appl Math,1979,36:516-542.
[19]  Hofbauer J. On the occurrence of limit cycles in the Volterra-Lotka equation[J]. Nonlinear Anal,1981,5:1003-1007.
[20]  Zeeman M L. Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems[J]. Dyn Stab Syst,1993,8:189-216.
[21]  van den Driessche P, Zeeman M L. Three-dimensional competitive Lotka-Volterra systems with no periodic orbits[J]. SIAM J Math Anal,1997,280:227-234.
[22]  Sigmund K. The population dynamics conflict and cooperation[R]. Proc Inter Congress Math 1998. Documenta Mathematica,1998,1:487-506.
[23]  Hofbauer J, Sigmund K. Evolutionary game dynamics[J]. Bull Amer Math Soc,2003,40:479-519.
[24]  Hofbauer J, So J W. Multiple limit cycles in three dimensional Lotka-Volterra equations[J]. Appl Math Lett,1994,7:65-70.
[25]  Lian X, Lu Z, Luo Y. Automatic search for multiple limit cycles in three-dimensional Lotka-Volterra competitive systems with classes 30 and 31 in Zeeman’s classification[J]. J Math Anal Appl,2008,348:34-37.
[26]  Lu Z, Luo Y. Two limit cycles in three dimensional Lotka-Volterra systems[J]. Comput Math Appl,2002,44:51-66.
[27]  Lu Z, Luo Y. Three limit cycles for a three-dimensional Lotka-Volterra competitive system with a heteroclinic cycle[J]. Comput Math Appl,2003,46:231-238.
[28]  Gyllenberg M, Yan P. Four limit cycles for a three-dimensional competitive Lotka-Volterra system with a heteroclinic cycle[J]. Comput Math Appl,2009,58:649-669.
[29]  Goh B S. Management and Analysis of Biological Populations[M]. Amsterdam:Elsevier Sci Pub Co,1980.
[30]  Bomze I M. Lotka-Volterra equations and replicator dynamics: A two dimensional classification[J]. Biol Cybern,1983,48:201-211.
[31]  Bomze I M. Lotka-Volterra equation and replicator dynamics: New issues in classification[J]. Biol Cybern,1995,72:447-453.
[32]  Butler G, Freedman H I, Waltman P. Uniformly persistent systems[J]. Proc Am Math Soc,1986,96:425-430.
[33]  Butler G, Waltman P. Persistence in dynamical systems[J]. J Diff Eqns,1986,63:255-263.
[34]  Gaunersdorfer A. Time averages for heteroclinic attractors[J]. SIAM J Appl Math,1992,52:1476-1489.
[35]  Gyllenberg M, Yan P. On the number of limit cycles for three dimensional Lotka-Volterra systems[J]. Discrete Contin Dyn Syst,2009,11:347-352.
[36]  Gyllenberg M, Yan P, Wang Y. A 3D competitive Lotka-Volterra system with three limit cycles: A classification of a conjecture by Hofbauer and So[J]. Appl Math Lett,2006,19:1-7.
[37]  Gyllenberg M, Yan P, Wang Y. Limit cycles for the competitor-competitor-mutualist Lotka-Volterra systems[J]. Physica,2006,D221:135-145.
[38]  Hallam T, Svoboda L, Gard T. Persistence and extinction in three species Lotka-Volterra competitive systems[J]. Math Biosci,1979,46:117-124.
[39]  Hirsch M W. Systems of differential equations which are competitive or cooperative: I. limit sets[J]. SIAM J Math Anal,1982,13:167-179.
[40]  Hirsch M W. Systems of differential equations which are competitive or cooperative: III. Competing species[J]. Nonlinearity,1988,1:51-71.
[41]  Jansen W. A permanence theorem for replicator and Lotka-Volterra systems[J]. J Math Biol,1987,25:411-422.
[42]  Lotka A J. Undamped oscillations derived from the law of mass action[J]. J Am Chem Soc,1920,42:1595-1598.
[43]  罗勇,陆征一. 三种群Lotka-Volterra捕食系统多个极限环的存在性[J]. 生物数学学报,2002,17:293-298.
[44]  May R M, Leonard W. Nonlinear aspects of competition between three species[J]. SIAM J Appl Math,1975,29:243-252.
[45]  Peschel M, Mende W. The Predator-prey Models[M]. New York: Springer-Verlag,1986.
[46]  Schuster P, Sigmund K, Wolff R. On ω-limits for competition between three species[J]. SIAM J Appl Math,1979,37:49-54.
[47]  Scudo F, Ziegler J R. The golden age of theoretical ecology: 1923—1940[C]//Lecture Notes in Biomath. 22. Berlin, Heidelberg, New York:Springer-Verlag,1978.
[48]  Smale S. On the differential equations of species in competition[J]. J Math Biol,1976,3:5-7.
[49]  Baer S, Li B, Smith H L. Multiple limit cycles in the standard model of three species competition for three essential resources[J]. J Math Biol,2006,52:745-760.
[50]  Volterra V. Variations and Fluctuations in the Numbers of Coexisting Animal Species[C]//Scudo F M, Ziegler J R. The Golden Age of Theoretical Ecology: 1923—1940. Berlin:Springer-Verlag,1928:65-236.
[51]  Xiao D, Li W. Limit cycles for the competitive three dimensional Lotka-Volterra system[J]. J Diff Eqns,2000,164:1-15.
[52]  Zeeman E C. Population dynamics from game theory[C]//Glob Theo Dyn Syst. Lecture Notes in Math. 819. New York:Springer-Verlag,1980:471-497.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133