(美)Hofbauer J, Sigmund K. 进化对策与种群动力学[M]. 陆征一,罗勇,译. 成都:四川科学技术出版社,2002.
[7]
Lu Z, Takeuchi Y. Qualitative stability and global stability for Lotka-Volterra systems[J]. J Math Anal Appl,1994,182:260-268.
[8]
Lu Z, Takeuchi Y. Global dynamical behavior for Lotka-Volterra systems with a reducible interaction matrix[J]. J Math Anal Appl,1995,193:559-572.
[9]
陈兰荪,宋新宇,陆征一. 数学生态学模型与研究方法[M]. 成都:四川科学技术出版社,2003.
[10]
Liu L, Lu Z, Wang D M. The structure of LaSalle’s invariant set for Lotka-Volterra systems[J]. Science in China,1991,A34:783-790.
[11]
Lu Z. On the LaSalle’s invariant set for five-dimensional Lotka-Volterra raprey-predator chain systems[J]. Acta Math Sinica,1989,5:214-218.
[12]
Luo Y, Lu Z. Stability analysis for Lotka-Volterra systems based on an algorithm of real root isolation[J]. J Comput Appl Math,2007,201(2):367-373.
[13]
Lu Z, Takeuchi Y. Permanence and global stability for cooperative Lotka-Volterra diffusion systems[J]. Nonlinear Anal:TMA,1992,19:963-975.
[14]
Takeuchi Y, Lu Z. Permanence and global stability for competitive Lotka-Volterra diffusion system[J]. Nonlinear Anal,1995,24:91-104.
[15]
Hofbauer J, So J W, Takeuchi Y. Globel stability of competition in patchy environment[J]. Diff Eqns Dyn Syst,1996,4:213-224.
[16]
Smith H L. Systems of ordinary differential equations which generate an order preserving flow: A survey of results[J]. SIAM Rev,1988,30:87-113.
[17]
Lu Z, Wang G J. The positive definiteness of a class of polynomials from the global stability analysis of Lotka-Volterra systerms[J]. Comput Math Appl,1999,38:19-27.
[18]
Coste J, Peyraud J, Coullet P. Asymptotic behavior in the dynamics of competing species[J]. SIAM J Appl Math,1979,36:516-542.
[19]
Hofbauer J. On the occurrence of limit cycles in the Volterra-Lotka equation[J]. Nonlinear Anal,1981,5:1003-1007.
[20]
Zeeman M L. Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems[J]. Dyn Stab Syst,1993,8:189-216.
[21]
van den Driessche P, Zeeman M L. Three-dimensional competitive Lotka-Volterra systems with no periodic orbits[J]. SIAM J Math Anal,1997,280:227-234.
[22]
Sigmund K. The population dynamics conflict and cooperation[R]. Proc Inter Congress Math 1998. Documenta Mathematica,1998,1:487-506.
[23]
Hofbauer J, Sigmund K. Evolutionary game dynamics[J]. Bull Amer Math Soc,2003,40:479-519.
[24]
Hofbauer J, So J W. Multiple limit cycles in three dimensional Lotka-Volterra equations[J]. Appl Math Lett,1994,7:65-70.
[25]
Lian X, Lu Z, Luo Y. Automatic search for multiple limit cycles in three-dimensional Lotka-Volterra competitive systems with classes 30 and 31 in Zeeman’s classification[J]. J Math Anal Appl,2008,348:34-37.
[26]
Lu Z, Luo Y. Two limit cycles in three dimensional Lotka-Volterra systems[J]. Comput Math Appl,2002,44:51-66.
[27]
Lu Z, Luo Y. Three limit cycles for a three-dimensional Lotka-Volterra competitive system with a heteroclinic cycle[J]. Comput Math Appl,2003,46:231-238.
[28]
Gyllenberg M, Yan P. Four limit cycles for a three-dimensional competitive Lotka-Volterra system with a heteroclinic cycle[J]. Comput Math Appl,2009,58:649-669.
[29]
Goh B S. Management and Analysis of Biological Populations[M]. Amsterdam:Elsevier Sci Pub Co,1980.
[30]
Bomze I M. Lotka-Volterra equations and replicator dynamics: A two dimensional classification[J]. Biol Cybern,1983,48:201-211.
[31]
Bomze I M. Lotka-Volterra equation and replicator dynamics: New issues in classification[J]. Biol Cybern,1995,72:447-453.
[32]
Butler G, Freedman H I, Waltman P. Uniformly persistent systems[J]. Proc Am Math Soc,1986,96:425-430.
[33]
Butler G, Waltman P. Persistence in dynamical systems[J]. J Diff Eqns,1986,63:255-263.
[34]
Gaunersdorfer A. Time averages for heteroclinic attractors[J]. SIAM J Appl Math,1992,52:1476-1489.
[35]
Gyllenberg M, Yan P. On the number of limit cycles for three dimensional Lotka-Volterra systems[J]. Discrete Contin Dyn Syst,2009,11:347-352.
[36]
Gyllenberg M, Yan P, Wang Y. A 3D competitive Lotka-Volterra system with three limit cycles: A classification of a conjecture by Hofbauer and So[J]. Appl Math Lett,2006,19:1-7.
[37]
Gyllenberg M, Yan P, Wang Y. Limit cycles for the competitor-competitor-mutualist Lotka-Volterra systems[J]. Physica,2006,D221:135-145.
[38]
Hallam T, Svoboda L, Gard T. Persistence and extinction in three species Lotka-Volterra competitive systems[J]. Math Biosci,1979,46:117-124.
[39]
Hirsch M W. Systems of differential equations which are competitive or cooperative: I. limit sets[J]. SIAM J Math Anal,1982,13:167-179.
[40]
Hirsch M W. Systems of differential equations which are competitive or cooperative: III. Competing species[J]. Nonlinearity,1988,1:51-71.
[41]
Jansen W. A permanence theorem for replicator and Lotka-Volterra systems[J]. J Math Biol,1987,25:411-422.
[42]
Lotka A J. Undamped oscillations derived from the law of mass action[J]. J Am Chem Soc,1920,42:1595-1598.
May R M, Leonard W. Nonlinear aspects of competition between three species[J]. SIAM J Appl Math,1975,29:243-252.
[45]
Peschel M, Mende W. The Predator-prey Models[M]. New York: Springer-Verlag,1986.
[46]
Schuster P, Sigmund K, Wolff R. On ω-limits for competition between three species[J]. SIAM J Appl Math,1979,37:49-54.
[47]
Scudo F, Ziegler J R. The golden age of theoretical ecology: 1923—1940[C]//Lecture Notes in Biomath. 22. Berlin, Heidelberg, New York:Springer-Verlag,1978.
[48]
Smale S. On the differential equations of species in competition[J]. J Math Biol,1976,3:5-7.
[49]
Baer S, Li B, Smith H L. Multiple limit cycles in the standard model of three species competition for three essential resources[J]. J Math Biol,2006,52:745-760.
[50]
Volterra V. Variations and Fluctuations in the Numbers of Coexisting Animal Species[C]//Scudo F M, Ziegler J R. The Golden Age of Theoretical Ecology: 1923—1940. Berlin:Springer-Verlag,1928:65-236.
[51]
Xiao D, Li W. Limit cycles for the competitive three dimensional Lotka-Volterra system[J]. J Diff Eqns,2000,164:1-15.
[52]
Zeeman E C. Population dynamics from game theory[C]//Glob Theo Dyn Syst. Lecture Notes in Math. 819. New York:Springer-Verlag,1980:471-497.