Son Y Wi, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons[J]. Phys Rev Lett,2006,97(21):216803.
[16]
Son Y Wi, Cohen M L, Louie S G. Half-metallic graphene nanoribbons[J]. Nature,2006,444:347-349.
[17]
Rojas F M, Rossier J F, Palacios J J. Giant Magnetoresistance in ultrasmall graphene based devices[J]. Phys Rev Lett,2009,102(13):136810.
[18]
Jin C H, Lan H P, Peng L M, et al. Deriving carbon atomic chains from graphene[J]. Phys Rev Lett,2009,102(20):205501.
[19]
Chuvilin A, Meyer J C, Siller G A, et al. From graphene constrictions to single carbon chains[J]. New J Phys,2009,11:083019.
[20]
Shen L, Zeng M G, Yang S W, et al. Electron transport properties of atomic carbon nanowires between graphene electrodes[J]. J Am Chem Soc,2010,132,11481-11486.
[21]
Ordejón P, Artacho E, Soler J M. Self-consistent order-N density-functional calculations for very large systems[J]. Phys Rev,1996,B53(4):R10441-R10441.
[22]
Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-N materials simulation[J]. J Phys:Conden Matter,2002,14(35):2745-2779.
[23]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev,1996,B77(18):3865-3868.
[24]
Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations[J]. Phys Rev,1993,B43(14):1993-2006.
[25]
Jeremy T, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Phys Rev,2001,B63(24):245407.
[26]
Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method for nonequilibrium electron transport[J]. Phys Rev,2002,B65(16):165401.
[27]
Han M Y, zyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons[J]. Phys Rev Lett,2007,98(20):206805.
[28]
Biel B, Blasé X, Triozon F, et al. Anomalous doping effects on charge transport in graphene nanoribbons[J]. Phys Rev Lett,2009,102(9):096803.