全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含有碳链通道的石墨烯纳米带电子特性的第一性原理研究

, PP. 87-91

Keywords: 第一性原理,石墨烯纳米带,原子结构,电子能带结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用第一性原理的密度泛函理论结合非平衡格林函数的计算方法,研究了含有多碳链通道的石墨烯纳米带的原子结构、电子能带结构与电子输运特性.结果表明,移除大量原子后含有双碳原子链的纳米带的能隙显著增大,这说明电子从占据态到未占据态的跃迁将更加困难;并且最高占据子能带与最低未占据子能带几乎与费米能级平行,说明边缘态几乎完全消失.电子输运特性的计算结果与电子能带结果是自洽的,碳链的引入导致纳米带电导隙的增大和费米能级位置电导的湮没.这说明通过电子束轰击的方式裁剪纳米带的原子结构来制备集成度更高、尺度更小的一维半导体纳

References

[1]  Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
[2]  Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007,6:183-191.
[3]  Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Rev Modern Phys,2009,81:109-162.
[4]  Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438:197-200.
[5]  Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene[J]. Nature,2005,438:201-204.
[6]  Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum hall effect in graphene[J]. Science,2007,315:1379-1379.
[7]  Wilson M. Electrons in atomically thin carbon sheets behave like massless particles[J]. Phys Today,2006,59(10):21-23.
[8]  Geim A K. Graphene:Status and prospects[J]. Science,2009,324:1530-1534.
[9]  Fujita M, Wakabayahshi K, Nakada K, et al. Peculiar localized states at zigzag graphite edge[J]. J Phys Society Jpn,1996,65(7):1920-1923.
[10]  张盈利,刘开辉,王文龙,等. 石墨烯的透射电子显微学研究[J]. 物理,2009,38(6):401-408.
[11]  颜浩然,霍新霞,王畅,等. 锯齿形石墨烯带(7-ZGNR)输运性质的研究[J]. 微纳电子技术,2009,46(8):463-466.
[12]  任文才,成会明. 石墨烯:丰富多彩的完美二维晶体:2010年度诺贝尔物理学奖评述[J]. 物理,2010,39(12):855-859.
[13]  黄毅,陈永胜. 石墨烯的功能化及其相关应用[J]. 中国科学,2009,B39(9):887-896.
[14]  胡海鑫,张振华,刘新海,等. 石墨烯纳米带电子结构的紧束缚法研究[J]. 物理学报,2009,58(10):7156-7161.
[15]  Son Y Wi, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons[J]. Phys Rev Lett,2006,97(21):216803.
[16]  Son Y Wi, Cohen M L, Louie S G. Half-metallic graphene nanoribbons[J]. Nature,2006,444:347-349.
[17]  Rojas F M, Rossier J F, Palacios J J. Giant Magnetoresistance in ultrasmall graphene based devices[J]. Phys Rev Lett,2009,102(13):136810.
[18]  Jin C H, Lan H P, Peng L M, et al. Deriving carbon atomic chains from graphene[J]. Phys Rev Lett,2009,102(20):205501.
[19]  Chuvilin A, Meyer J C, Siller G A, et al. From graphene constrictions to single carbon chains[J]. New J Phys,2009,11:083019.
[20]  Shen L, Zeng M G, Yang S W, et al. Electron transport properties of atomic carbon nanowires between graphene electrodes[J]. J Am Chem Soc,2010,132,11481-11486.
[21]  Ordejón P, Artacho E, Soler J M. Self-consistent order-N density-functional calculations for very large systems[J]. Phys Rev,1996,B53(4):R10441-R10441.
[22]  Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-N materials simulation[J]. J Phys:Conden Matter,2002,14(35):2745-2779.
[23]  Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev,1996,B77(18):3865-3868.
[24]  Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations[J]. Phys Rev,1993,B43(14):1993-2006.
[25]  Jeremy T, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Phys Rev,2001,B63(24):245407.
[26]  Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method for nonequilibrium electron transport[J]. Phys Rev,2002,B65(16):165401.
[27]  Han M Y, zyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons[J]. Phys Rev Lett,2007,98(20):206805.
[28]  Biel B, Blasé X, Triozon F, et al. Anomalous doping effects on charge transport in graphene nanoribbons[J]. Phys Rev Lett,2009,102(9):096803.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133