Hodgkin A, Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. J Physiol,1952,117:500-544.
[2]
Sugie J, Yamamoto M. On the existence of periodic solutions for the FitzHugh nerve system[J]. Math Japonica,1990,35(4):759-767.
[3]
Troy W C. Oscillation phneomena in the Hodgkin-Huxley equations[J]. Roy Soc Edin Proc,1976,A74:299-310.
[4]
FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane[J]. Biophys J,1961,1:445-466.
[5]
Sugie J. Nonexistence of periodic solutions for the FitzHugh nerve system[J]. Quart Appl Math,1991,49:543-554.
[6]
Kaumann E, Staude U. Uniqueness and nonexistence of limit cycles for the FitzHugh equation[C]//Knobloch H W, Schmitt K. Lecture Notes in Math. 1017. New York:Springer-Verlag,1983:313-321.
[7]
Treskov S A, Volokitin E P. On existence of periodic solutions for the FitzHugh nerve system[J]. Quart Appl Math,1996,49:601-607.
[8]
Geogescu A, Rocsoreanu C, Giurgiteau N. FitzHugh-Nagumo Model: Bifurcation and Dynamic[M]. Dordrecht: Kluwer Academic Publisher,2000.
[9]
Rocsoreanu C, Giurgiteau N, Geogescu A. Connections between saddles for the FitzHugh-Nagumo system[J]. Inter J Bifur Chaos,2001,11(2):533-540.
[10]
Geogescu A, Rocsoreanu C, Giurgiteau N. Global bifurcation in FitzHugh-Nagumo model[C]//Buescu J, Castro S B S D, da Silva Dias A P, et al. Bifurcation, Symmetry and Patterns. Trends in Mathematical. 2003:197-202.
[11]
Karreman G. Some types of relaxation oscillations as models of all-or-none phenomena[J]. Bull Math Biophys,1949,11:300-311.
[12]
张芷芬,丁同仁,黄文灶,等. 常微分方程定性理论[M]. 北京:科学出版社,1985.
[13]
Sansone G, Conti R. Non-linear Differential Equations[M]. New York:Pergamon,1964.
[14]
Sugie J, Hara T. Non-exsitence of periodic solutions of the Liénard system[J]. J Math Anal Appl,1991,159(1):543-554.
[15]
Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[M]. New York:Springer-Verlag,1997.