全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含反应扩散项和混合时滞的随机Hopfield神经网络的时滞相关全局指数稳定性分析

, PP. 1-6

Keywords: 随机Hopfield神经网络,反应扩散,混合时滞,Lyapunov泛函,全局指数稳定

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究一类含反应扩散项和混合时滞的随机Hopfield神经网络的稳定性,通过构造恰当的Lyapunov泛函和运用不等式分析,得到了该网络平凡解时滞相关的全局均方指数稳定性条件,推广了已有的结果.利用一个例子,说明结果的有效性.

References

[1]  Hopfield J J. Neural networks and physical systems with emergent collective computational abilities\[J\]. Proc Natl Sci,1982,79(8):2554-2558.
[2]  Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons\[J\]. Proc Natl Sci,1984,81(10):3088-3092.
[3]  Zhu W. Global exponential stability of impulsive reaction-diffusion equation with variable delays\[J\]. Appl Math Comput,2008,205:362-369.
[4]  Yang D G, Liao X F. New delay-dependent global asymptotic stability criteria of delayed Hopfield neural networks\[J\]. Nonlinear Anal: RWA,2008,9:1894-1904.
[5]  Yang D G, Hu C Y. Novel delay-dependent global asymptotic stability condition of Hopfield neural networks with delays\[J\]. Comput Math Appl,2009,57:1978-1984.
[6]  Magdi S M, Xia Y Q. Improved exponential stability analysis for delayed recurrent neural networks\[J\]. J Franklin Institute,2011,348:201-211.
[7]  Shao Y F. Exponential stability of periodic neural networks with impulsive effects and time-varying delays\[J\]. Appl Math Comput,2011,217:6893-6899.
[8]  Shi P L, Dong L Z. Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses\[J\]. Appl Math Comput,2010,216:622-630.
[9]  Manuel P, Gonzaco R. Existence and stability of almost periodic solutions in impulsive neural networks models\[J\]. Appl Math Comput,2010,217:4167-4177.
[10]  Zhou J, Li S Y, Yang Z G. Global exponential stability of Hopfield neural networks with distributed delays\[J\]. Appl Math Model,2009,33:1513-1520.
[11]  Xiao B. Existence and uniqueness of almost periodic solutions for a class of Hopfield neural networks with neutral delay\[J\]. Appl Math Lett,2009,22:528-533.
[12]  Huang Z T, Yang Q G. Existence and exponential stability of almost periodic solution for stochastic cellular neural networks with delay\[J\]. Chaos, Solitons and Fractals,2009,42:773-780.
[13]  Bai C Z. Global stability of almost periodic solutions of Hopfield neural networks with neutral time-varying delays\[J\]. Chaos, Solitons and Fractals,2008,203:72-79.
[14]  廖晓昕,傅予力. 具有反应扩散项的Hopfield 神经网络的稳定性\[J\]. 电子学报,2000,28:78-82.
[15]  廖晓昕,杨叔子. 具有反应扩散项的广义神经网络的稳定性\[J\]. 中国科学,2002,E32(1):87-94.
[16]  王林山,徐道义. 变时滞反应扩散Hopfield神经网络全局指数稳定性\[J\]. 中国科学,2003,E33(6):488-495.
[17]  Lu J G, Lu L J. Global exponential stability and periodicity of reaction-diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions\[J\]. Chaos, Solitons and Fractals,2009,39:1538-1549.
[18]  Qiu J L, Cao J D. Delay-dependent exponential stability for a class of neural networks with time delays and reaction-diffusion terms\[J\]. J Frankin Institute,2009,346:301-314.
[19]  Lü Y, Lü W, Sun J H. Convergence dynamics of stochastic reaction-diffusion recurrent neural networks with continuously distributed delays\[J\]. Nonlinear Anal: RWA,2008,9:1590-1606.
[20]  Liu Z M, Peng J. Delay-independent stability of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions\[J\]. Neural Comput Appl,2010,19:151-158.
[21]  Luo J W. Stability of stochastic partial differential equations with infinite delay\[J\]. Comput Appl Math,2008,222:364-371.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133