全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不可压Navier-Stokes方程的扩散松弛近似(英)

Keywords: 不可压Navier-Stokes方程,扩散松弛近似,双曲奇异摄动

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过扩散松弛机制,研究了二维环T2上不可压Navier-Stokes方程一个双曲奇异摄动问题.运用可对称化双曲系统的能量方法,严格证明了Navier-Stokes方程的扩散松弛极限.

References

[1]  Bouchut F, Golse F, Pulvirenti M. Kinetic Equations and Asymptotic Theory[M]. Paris:Gauthiers-Villars,2000.
[2]  Donatelli D, Marcati P. Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems[J]. Trans Am Math Soc,2004,356:2093-2121.
[3]  Marcati P, Rubino B. Hyperbolic to parabolic relaxation theory for quasilinear first order systems[J]. J Diff Eqns,2000,162:359-399.
[4]  Brenier Y, Natalini R, Puel M. On a relaxation approximation of the incompressible Navier-Stokes equations[J]. Proc Am Math Soc,2004,132:1021-1028.
[5]  Jin S, Liu H L. Diffusion limit of a hyperbolic system with relaxation[J]. Meth Appl Anal,1998,5:317-334.
[6]  Yong W A. Relaxation limit of multi-dimensional isentropic hydrodynamical models for semiconductors[J]. SIAM J Appl Math,2004,64:1737-1748.
[7]  Natalini R, Rousset F. Convergence of a singular Euler-Poisson approximation of the incompressible Navier-Stokes equations[J]. Proc Am Math Soc,2006,134:2251-2258.
[8]  Xu J, Yong W A. Relaxation-time limits of non-isentropic hydrodynamic models for semiconductors[J]. J Diff Eqns,2009,247:1777-1795.
[9]  Yang J W, Wang S. The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas[J]. J Math Anal Appl,2011,380:343-353.
[10]  廖为,蒲志林. 一类拟线性椭圆型方程Dirichlet问题正解的存在性[J]. 四川师范大学学报:自然科学版,2007,30(1):31-35.
[11]  李传华,冯春华. 一类二阶常p-Laplace系统周期解的存在性[J]. 广西师范大学学报:自然科学版,2011,29(3):28-32.
[12]  McGrath F J. Nonstationary plane flow of viscous and ideal fluds[J]. Arch Rational Mech Anal,1968,27:229-348.
[13]  Kato T. Nonstationary flow of viscous and ideal fluids in R3[J]. J Funct Anal,1972,9:296-305.
[14]  Loeper G. Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems[J]. Commun Partial Diff Eqns,2005,30:1141-1167.
[15]  Taylor M E. Partial Differential Equations(III)of Applied Mathematical Sciences[M]. New York:Springer-Verlag,1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133