全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Banach空间中半变分不等式的Levitin-Polyak适定性(英)

Keywords: 半变分不等式,Levitin-Polyak适定性,gap函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

首先在Banach空间中给出了半变分不等式(HVI)的Levitin-Polyak适定性的概念.然后,给出了半变分不等式的Levitin-Polyak适定性的度量刻画.最后,讨论了半变分不等式HVI(A,f,j,K)的Levitin-Polyak适定性和该半变分不等式的gap函数所确定的优化问题的Levitin-Polyak适定性之间的关系.

References

[1]  Tykhonov A N. On the stability of the functional optimization problem[J]. USSR J Comput Math Math Phys,1966,6:631-634.
[2]  Zolezzi T. Extend wellposedness of optimization problems[J]. J Optim Theory Appl,1996,91:257-266.
[3]  Zolezzi T. Wellposedness criteria in optimization with application to the calculus of variations[J]. Nonlinear Anal:TMA,1995,25:437-453.
[4]  Zolezzi T. Wellposedness of optimal control problems[J]. Control and Cybernetics,1994,23:289-301.
[5]  Levitin E S, Polyak B T. Convergence of minimizing sequences in conditional extremum problem[J]. Soveit Math Dokl,1996,7:764-767.
[6]  Bednarczuk E M. Wellposedness of optimization problem[C]//Jahn J, Krabs W. Recent Advances and Historical Development of Vector Optimization Problems, Lecture Notes in Economics and Mathematical Systems. Berlin:Springer-Verlag,1987,294:51-61.
[7]  Lucchetti R, Patrone F. A characterization of Tykhonov wellposedness for minimum problems with applications to variational inequalities[J]. Numer Funct Anal Optim,1981,3(4):461-476.
[8]  Hu R, Fang Y P. LevitinPolyak wellposedness of variational inequalities[J]. Nonlinear Anal:TMA,2010,72:373-381.
[9]  Panagiotopoulos P D. Nonconvex energy functions, hemivariational inequalities and substationarity principles[J]. Acta Mech,1983,42:160-183.
[10]  Clarke F H. Optimization and Nonsmooth Analysis[M]. Philadelphia:SIAM,1990.
[11]  Motreanu D, Panagiotopoulos P D. Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities and Applications[M]. Dordrecht:Kluwer Academic,1999.
[12]  Naniewicz Z, Panagiotopoulos P D. Mathematical Theory of Hemivariational Inequalities and Applications[M]. New York:Marcel Dekker,1995.
[13]  Panagiotopoulos P D. Hemivariational Inequalities: Applications in Mechanics and Engineering[M]. Berlin:Springer-Verlag,1993.
[14]  Carl S, Le V K, Motreanu D. Evolutionary variationalhemivariational inequalities: existence and comparison results[J]. J Math Anal Appl,2008,345:545-558.
[15]  Goeleven D, Mentagui D. Well posed hemivariational inequalities[J]. Numer Funct Anal Optim,1995,16:909-921.
[16]  Liu Z H. BrowderTikhonov regularization of noncoercive evolution hemivariational inequalities[J]. Inverse Problems,2005,21:459-471.
[17]  Xiao Y B, Huang N J. BrowderTikhonov reguarization for a class of evolution second order hemivariational inequalities[J]. J Global Optim,2009,45:371-388.
[18]  Kuratowski K. Topology:1,2[M]. New York:Academic Press,1968.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133