全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

几类非线性发展方程的精确解和不变集

Keywords: 不变集,精确解,发展方程,旋转群,伸缩群

Full-Text   Cite this paper   Add to My Lib

Abstract:

讨论了几类非线性发展方程的不变集和精确解,给出了属于不变集的几种方程,同时,展示了方程的例子和对应的精确解.

References

[1]  Bluman G W, Kumei S. Symmetries and Differential Equations[M]. New York:Springer-Verlag,1989.
[2]  Olver P J. Applications of Lie Groups to Differential Equations[M]. 2nd Ed. New York:Springer-Verlag,1993.
[3]  Ibragimov N H. Transformation Groups Applied to Mathematical Physics[M]. New York:Springer-Verlag,2001.
[4]  Bluman G W, Cole J D. The general similarity solution of the heat equation[J]. J Math Mech,1969,18:1025-1042.
[5]  Arrigo D J, Broadbridge P, Hill J M. Nonclassical symmetry for nonlinear diffusion equations[J]. IMA J Appl Math,1994,52:1-24.
[6]  Estévez P G, Gordoa P R. Nonclassical symmetries and the singular manifold method: theory and examples[J]. Stud Appl Math,1995,95:73-113.
[7]  Nucci M C. Iterating the nonclassical symmetries method[J]. Physica D,1994,78:124-134.
[8]  Clarkson P A. Nonclassical symmetry reductions of the Boussinesq equation[J]. Chaos, Solitons & Fractals,1995,5:2261-2301.
[9]  Estévez P G, Qu C Z, Zhang S L. Separation of variables of a generalized porous medium equation with nonlinear source[J]. J Math Anal Appl,2002,275:44-59.
[10]  Fokas A S, Liu Q M. Nonlinear interaction of traveling waves of nonintegrable equations[J]. Phys Rev Lett,1994,72:3293-3296.
[11]  Zhdanov R Z. Conditional Lie-B?cklund symmetry and reduction of evolution equation[J]. J Phys A:Math Gen,1995,28:3841-3850.
[12]  Qu C Z. Symmetries and solutions to the thin film equations[J]. J Math Anal Appl,2006,317:381-397.
[13]  Clarkson P A, Kruskal M D. New similarity reductions of the Boussinesq equation[J]. J Math Phys,1989,30:2201-2213.
[14]  Clarkson P A. New exact solutions of the Boussinesq equation[J]. Eur J Appl Math,1990,1:279-300.
[15]  Fuschych W I, Zhdanov R Z. Anti-reduction and exact solutions of nonlinear heat equations[J]. J Nonlinear Math Phys,1994,1:60-64.
[16]  Estévez P G. The direct method and the singular manifold method for the Fitzhugh-Nagumo equation[J]. Phys Lett,1992,A171:259-261.
[17]  Galaktionov V A. Ordered invariant sets for nonlinear evolution equations of KdV-type[J]. Comput Math Phys,1999,39:1564-1570.
[18]  Galaktionov V A. Groups of scalings and invariant sets for higher-order nonlinear evolution equations[J]. Diff Integral Eqns,2001,14:913-924.
[19]  Qu C Z, Estévez P G. Extended rotation and scaling groups for nonlinear evolution equations[J]. Nonlinear Anal,2003,52:1655-1673.
[20]  Jia H B, Xu W. Exact solutions and invariant sets to general reaction-diffusion equation[J]. Commun Theory Phys,2008,49:1389-1392.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133