Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J]. Nature Materials,2009,8(3):235-242.
[2]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics,2012,6(11):749-758.
[5]
Vakil A, Engheta N. Transformation optics using graphene[J]. Science,2011,332(6035):1291-1294.
[6]
Cocchi C, Prezzi D, Ruini A, et al. Optical excitations and field enhancement in short graphene nanoribbons[J]. J Phys Chem Lett,2012,3(7):924-929.
[7]
Christensen J, Manjavacas A, Thongrattanasiri S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano,2012,6(1):431-440.
[8]
Ong Z Y, Fischetti M V. Theory of interfacial plasmon-phonon scattering in supported graphene[J]. Phys Rev,2012,B86(16):165422.
[9]
Kim S, Hwang S W, Kim M K. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape[J]. ACS Nano,2012,6(9):8203-8208.
[10]
Yin H F, Zhang H. Plasmons in graphene nanostructures[J]. J Appl Phys,2012,111(10):103502.
[11]
Li M, Wu W, Ren W, et al. Synthesis and upconversion luminescence of N-doped graphene quantum dots[J]. Appl Phys Lett,2012,101(10):103107.
[12]
Jin S H, Kim D H, Jun G H, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J]. ACS Nano,2013,7(2):1239-1245.
[13]
Yan X, Cui X, Li B S, et al. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics[J]. Nano Lett,2010,10(5):1869-1873.
[14]
Yan X, Cui X, Li L. Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. J Am Chem Soc,2010,132(17):5944-5945.
[15]
Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. J Am Chem Soc,2012,134(1):15-18.
[16]
Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer[J]. Nano Lett,2009,9(2):887-891.
[17]
Song P, Meng S, Nordlander P, et al. Quantum plasmonics: symmetry-dependent plasmon-molecule coupling and quantized photoconductances[J]. Phys Rev,2012,B86(12):121410.
[18]
Song P, Nordlander P, Gao S W. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport[J]. J Chem Phys,2011,134(7):074701.
[19]
Tsai C Y, Lin J W, Wu C Y, et al. Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode[J]. Nano Lett,2012,12(3):1648-1654.
[20]
Marques M, Castro A, Bertsch G F, et al. Octopus: a first-principles tool for excited electron-ion dynamics[J]. Comput Phys Commun,2003,151(1):60-78.