全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石墨烯量子点二聚物的等离激元激发

Keywords: 等离激元,石墨烯量子点,含时密度泛函理论,量子点二聚物

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于含时密度泛函理论,研究了石墨烯量子点二聚物的等离激元激发.当2个石墨烯量子点靠近,若量子点间的间隙较大,通过电容性相互作用时,石墨烯量子点二聚物的低能等离激元共振模式随着间隙的减小发生红移.进一步减小间隙时,由于电子的隧穿,二聚物的等离激元共振模式发生了改变,杂化等离激元共振模式形成.杂化等离激元共振模式随着间隙的减小继续红移.石墨烯量子点二聚物等离激元共振模式的演化规律不依赖于石墨烯量子点的形状.

References

[1]  Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J]. Nature Materials,2009,8(3):235-242.
[2]  Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
[3]  曾晖,赵俊,韦建卫,等. 含有碳链通道的石墨烯纳米带电子特性的第一性原理研究[J]. 四川师范大学学报:自然科学版,2013,36(1):87-91.
[4]  Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics,2012,6(11):749-758.
[5]  Vakil A, Engheta N. Transformation optics using graphene[J]. Science,2011,332(6035):1291-1294.
[6]  Cocchi C, Prezzi D, Ruini A, et al. Optical excitations and field enhancement in short graphene nanoribbons[J]. J Phys Chem Lett,2012,3(7):924-929.
[7]  Christensen J, Manjavacas A, Thongrattanasiri S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano,2012,6(1):431-440.
[8]  Ong Z Y, Fischetti M V. Theory of interfacial plasmon-phonon scattering in supported graphene[J]. Phys Rev,2012,B86(16):165422.
[9]  Kim S, Hwang S W, Kim M K. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape[J]. ACS Nano,2012,6(9):8203-8208.
[10]  Yin H F, Zhang H. Plasmons in graphene nanostructures[J]. J Appl Phys,2012,111(10):103502.
[11]  Li M, Wu W, Ren W, et al. Synthesis and upconversion luminescence of N-doped graphene quantum dots[J]. Appl Phys Lett,2012,101(10):103107.
[12]  Jin S H, Kim D H, Jun G H, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J]. ACS Nano,2013,7(2):1239-1245.
[13]  Yan X, Cui X, Li B S, et al. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics[J]. Nano Lett,2010,10(5):1869-1873.
[14]  Yan X, Cui X, Li L. Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. J Am Chem Soc,2010,132(17):5944-5945.
[15]  Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. J Am Chem Soc,2012,134(1):15-18.
[16]  Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer[J]. Nano Lett,2009,9(2):887-891.
[17]  Song P, Meng S, Nordlander P, et al. Quantum plasmonics: symmetry-dependent plasmon-molecule coupling and quantized photoconductances[J]. Phys Rev,2012,B86(12):121410.
[18]  Song P, Nordlander P, Gao S W. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport[J]. J Chem Phys,2011,134(7):074701.
[19]  Tsai C Y, Lin J W, Wu C Y, et al. Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode[J]. Nano Lett,2012,12(3):1648-1654.
[20]  Marques M, Castro A, Bertsch G F, et al. Octopus: a first-principles tool for excited electron-ion dynamics[J]. Comput Phys Commun,2003,151(1):60-78.
[21]  李雪梅,李权,赵可清. 外场作用下含羟乙基活性基团的噻唑生色分子的光谱和二阶非线性光学性质[J]. 四川师范大学学报:自然科学版,2010,33(2):231-234.
[22]  刘芳玲,张红梅,廖显威. 萘及其1-卤素取代化合物的荧光光谱的量子化学研究[J]. 四川师范大学学报:自然科学版,2009,32(4):490-492.
[23]  Yabana K, Bertsch G F. Time-dependent local-density approximation in real time[J]. Phys Rev,1996,B54(7):4484.
[24]  Kim S, Hwang S W, Kim M K, et al. ACS Nano,2012,6(9):8203-8208.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133