[1] Enochs E E, Jenda O M G. Relative homological algebra[C]//De Gruyter Expositions in Math. Berlin:Walter de Gruyter & Co,2000.
[2]
Hovey M. Cotorsion pairs, model category structures, and representation theory[J]. Math Z,2002,241:553-592.
[3]
Gillespie J. Model structures on modules over Ding-Chen rings[J]. Algebra Represent Theory,2010,12:61-73.
[4]
Wagstaff S S, Sharif T, White D. AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules[J]. Algebra Represent Theory,2011,14:403-428.
[5]
Meng F Y, Pan Q X. X-Gorenstein projective and Y-Gorenstein injective modules[J]. Hacettepe Math,2011,40:537-554.
[6]
Zhu X S. Resolving resolution dimension[J]. Algebra Represent Theory,2013,16(4):1165-1191.
[7]
Ding N Q, Li Y, Mao L X. Strongly Gorenstein flat modules[J]. J Aust Math Soc,2009,66:323-338.
[8]
Ding N Q, Chen J L. The flat dimensions of injective modules[J]. Manuscripta Math,1993,78:165-177.
[9]
Enochs E E. Injective and flat covers, envelopes and resolvents[J]. Israel J Math,1981,39:190-209.
[10]
[1 Pinzon K. Absolutely pure covers[J]. Commun Algebra,2008,36:2186-2194.
[11]
[1 Bennis D, Mahdou N. Global Gorenstein dimensions[J]. Proc Am Math Soc,2010,138:461-465.
[12]
[1 Bennis D, Mahdou N. Gorenstein global dimensions and cotorsion dimension of rings[J]. Commun Algebra,2009,37:1709-1718.
[13]
[1 Enochs E E, Oyonarte L. Covers, Envelopes and Cotorsion Theories[M]. New York:Nova Science Publishers,2002.
[14]
[1 Holm H. Gorenstein homological dimensions[J]. J Pure Appl Algebra,2004,189:167-193.