全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

位势井在3个非线性源项波动方程中的应用

, PP. 152-156

Keywords: 非线性波动方程,位势井,存在性,有限时间爆破

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究一类半线性波动方程的初边值问题解的适定性,引进一种新的位势井方法,通过新构建的变分法来计算位势井深度并定义新的位势井,利用新位势井方法得到了解的不变集合,新位势井方法结合紧致性方法得到了具有3个非线性源项波动方程的初边值问题解的整体存在性,结合凸性方法得到了解的有限时间爆破.主要定理揭示了解的初始值对整体适定性的影响,同时这种新的位势井方法使得应用位势井理论处理问题的机制更加清晰,从而进一步丰富和发展了位势井理论.

References

[1]  [1] Sattinger D H. On global solution of nonlinear hyperbolie equations[J]. Arch Rat Mech Anal,1968,30:148-172.
[2]  Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space[J]. Math Jpn,1972,17:173-193.
[3]  Lions J L. Quelques Methodes de Resolution des Problemes aux Limites non Lineaires[M]. Paris:Dunod,1969.
[4]  Nakao N, Ono K. Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations[J]. Math Z,1993,214(2):325-342.
[5]  Payne L E, Sattinger D H. Sadle points and instability of nonlinear hyperbolic equations[J]. Israel J Math,1975,22:273-303.
[6]  Liu Y C, Xu R Z. Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign[J]. Discrete Cont Dyn Syst,2007,7(1):171-189.
[7]  Liu Y C, Zhao J S. On potential wells and applications to semilinear hyperbolic equations and parabolic equations[J]. Nonliear Anal,2006,64(12):2665-2687.
[8]  Song X F. Blowup and mass concentration phenomena for a system of Schrdinger equation withcombined power-type nonlinearities[J]. J Math Phys,2010,51:503-509.
[9]  舒级. 一类带调和势的阻尼非线性Schrdinger方程的爆破性质[J]. 四川师范大学学报:自然科学版,2009,32(2):143-145.
[10]  [1 Kametaka Y, Watanabe K, Nagai A. The best constant of Sobolev inequality in an n dimensional Euclidean space[J]. Proc Jpn Acad,2005,81(3):57-60.
[11]  [1 刘亚成,徐润章. 一类非线性色散耗散波动方程整体解的存在性[J]. 哈尔滨工程大学学报:自然科学版,2007,28(5):586-589.
[12]  [1 Glassay R T. Blow-up theorems for nonlinear wave equations[J]. Math Z,1973,32:183-203.
[13]  [1 Liu Y C. On potential wells and vacuum isolating of solutions for semilinear wave equations[J]. J Diff Eqns,2003,192(1):155-169.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133