全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类集值映射在迭代下集值点和集值区间的变化

, PP. 192-198

Keywords: 迭代,集值映射,集值点,集值区间,上半连续

Full-Text   Cite this paper   Add to My Lib

Abstract:

集值点和集值区间在迭代下的无规则变化是集值映射动力学行为变得复杂的主要原因.研究了一类单调的单集值点映射的迭代,讨论这类映射在迭代下集值点和集值区间的变化规律.

References

[1]  [1] Schrder E. ber Iterate funktionen[J]. Math Ann,1871,3:295-322.
[2]  Abel N H. Oeuvres completes[J]. Christiana,1881,II:36-39.
[3]  Dubbey J M. The Mathematical Work of Charles Babbage[M]. New York:Cambridge University Press,1978.
[4]  Chen J M, Zhang W N. Leading coefficient problem for polynomial-like iterative equations[J]. J Math Anal Appl,2009,349:413-419.
[5]  Li L, Yang D L, Zhang W N. A note on iterative roots of PM functions[J]. J Math Anal Appl,2008,341:1482-1486.
[6]  Li L, Zhang W M. Continuously decreasing solutions for polynomial-like iterative equations[J]. Sci China,2013,A56:1051-1058.
[7]  Li L, Zhang W N. Construction of usc solutions for a multivalued iterative equation of order n[J]. Results Math,2012,62:203-216.
[8]  Liu L, Jarczyk W, Li L, et al. Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than 2[J]. Nonlinear Anal,2012,75:286-303.
[9]  Liu L, Zhang W N. Non-monotonic iterative roots extended from characteristic intervals[J]. J Math Anal Appl,2011,378:359-373.
[10]  [1 Shi Y G, Li L, Lesniak Z. On conjugacy of r-modal interval maps with nonmonotonicity height equal to 1[J]. J Difference Equ Appl,2013,19:573-584.
[11]  [1 Xu B, Zhang W. Construction of continuous solutions and stability for the polynomial-like iterative equation[J]. J Math Anal Appl,2007,325:1160-1170.
[12]  [1 Zhang W M, Zhang W N. Continuity of iteration and approximation of iterative roots[J]. J Comput Appl Math,2011,235:1232-1244.
[13]  [1 Yang L L, Yang L, Yu Z H, et al. Real polynomial iterative roots in the case of nonmonotonicity height ≥2[J]. Sci China,2012,A55:2433-2446.
[14]  [1 Yu Z H, Yang L, Zhang W N. Discussion on polynomials having polynomial iterative roots[J]. J Symb Comput,2012,47(10):1154-1162.
[15]  [1 李林. 折线函数与集值函数的迭代与迭代根[D]. 成都:四川大学,2007.
[16]  [1 Zhang W X, Zhang W N. Computing iterative roots of polygonal functions[J]. J Comput Appl Math,2007,205:497-508.
[17]  [1 金蕾,周喆,刘旭. 迭代的计算与估计[J]. 数学的实践与认识,2004,34(4):170-175.
[18]  [1 Li L. Number of vertices for polygonal functions under iteration[J]. Korea Soc Math Educ,2007,14:99-109.
[19]  [1 孙太祥,蒋运然. 区间上平顶单峰自映射的迭代根[J]. 广西科学,2000,7(2):111-114.
[20]  孙太祥,席鸿建. 区间上平顶双峰连续自映射的迭代根[J]. 系统科学与数学,2001,21(3):348-361.
[21]  李林,林淑容,李春晔. 一个集值映射在迭代下集值点个数不增的条件[J]. 四川大学学报:自然科学版,2010,47:17-20.
[22]  Aubin J P, Frankowska H. Set-Valued Analysis[M]. Boston, Basel, Berlin:Birkhauser,1990.
[23]  Babbage C. Essay towards the calculus of functions[J]. Philosoph Transact,1815:389-423.
[24]  Baron K, Jarczyk W. Recent results on functional equations in a single variable, perspectives and open problems[J]. Aequationes Math,2001,61:1-48.
[25]  Kuczma M. Functional equation in a single variable[C]//Monografie Mat. Warszawa:Polish Scientific Publishers,1968,46.
[26]  Kuczma M, Choczewski B, Ger R. Iterative functional equations[C]//Encyclopedia of Mathematics and Its Applications. Cambridge:Cambridge University Press,1990,32.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133