全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

原核CRISPR-Cas系统的结构功能及应用

, PP. 268-281

Keywords: CRISPR,Cas,免疫,噬菌体,基因组编辑,Cas9

Full-Text   Cite this paper   Add to My Lib

Abstract:

CRISPR-Cas系统是新近在原核生物中发现的一种抵御外来DNA入侵的免疫机制,由一个成簇规则间隔的短回文重复序列(CRISPR)和附属的蛋白质(Cas)组成,广泛分布于真细菌和古菌中.CRISPR由重复序列及其间隔序列组成,间隔序列来自于过去的入侵DNA,并插入到细菌的CRISPR排列中.一旦出现新的入侵,CRISPR转录,其RNA经过加工后与Cas蛋白质组成一个核蛋白复合体,该复合体通过RNA与入侵DNA序列之间的互补配对,结合目标序列,最后Cas蛋白质将入侵DNA降解.此外,基于CRISPR系统中的Cas9蛋白,发展了一种新的基因组编辑技术,在不同的细胞中均能获得高效的基因定点打靶,展现出巨大的潜力.

References

[1]  [1] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide-sequence of the Iap gene responsible for alkaline-phosphatase isozyme conversion in Escherichia coli and identification of the gene product[J]. J Bacteriol,1987,169:5429-5433.
[2]  Nakata A, Amemura M, Makino K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome[J]. J Bacteriol,1989,171:3553-3556.
[3]  Groenen P M, Bunschoten A E, van Soolingen D, et al. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method[J]. Mol Microbiol,1993,10:1057-1065.
[4]  Mojica F J M, Juez G, Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites[J]. Mol Microbiol,1993,9:613-621.
[5]  Mojica F J M, Ferrer C, Juez G, et al. Long stretches of short tandem repeats are present in the largest replicons of the archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning[J]. Mol Microbiol,1995,17:85-93.
[6]  Jansen R, van Embden J D, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol,2002,43:1565-1575.
[7]  Jansen R, van Embden J D, Gaastra W, et al. Identification of a novel family of sequence repeats among prokaryotes[J]. OMICS,2002,6:23-33.
[8]  Lillestl R K, Redder P, Garrett RA, et al. A putative viral defence mechanism in archaeal cells[J]. Archaea,2006,2:59-72.
[9]  Tang T H, Bachellerie J P, Rozhdestvensky T, et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus[J]. Proc Natl Acad Sci USA,2002,99:7536-7541.
[10]  [1 Tang T H, Polacek N, Zywicki M, et al. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus[J]. Mol Microbiol,2005,55:469-481.
[11]  [1 Makarova K S, Aravind L, Grishin N V, et al. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis[J]. Nucleic Acids Res,2002,30:482-496.
[12]  [1 Haft D H, Selengut J, Mongodin E F, et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes[J]. PLoS Comput Biol,205,1:474-483.
[13]  [1 Mojica F J M, Díez-Villaseor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. J Mol Evol,2005,60:174-182.
[14]  [1 Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiol,2005,151:2551-2561.
[15]  [1 Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA and provide additional tools for evolutionary studies[J]. Microbiol,2005,151:653-663.
[16]  [1 Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science,2007,315:1709-1712.
[17]  [1 Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA[J]. Science,2008,322:1843-1845.
[18]  Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats[J]. Genome Biol,2007,8:R61.
[19]  Godde J S, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes[J]. J Mol Evol,2006,62:718-729.
[20]  Chakraborty S, Snijders A P, Chakravorty R, et al. Comparative network clustering of direct repeats (DRs) and cas genes confirms the possibility of the horizontal transfer of CRISPR locus among bacteria[J]. Mol Phylogenet Evol,2010,56:878-887.
[21]  Samai P, Smith P, Shuman S. Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris[J]. Acta Crystallogr F Struct Biol Cryst Commun,2010,66:1552-1556.
[22]  Nam K H, Ding F, Haitjema C, et al. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein[J]. J Biol Chem,2012,287:35943-35952.
[23]  Arslan Z, Wurm R, Brener O, et al. Double-strand DNA end-binding and sliding of the toroidal CRISPR-associated protein Csn2[J]. Nucleic Acids Res,2013,doi:10.1093/nar/gkt315.
[24]  Goren M G, Yosef I, Auster O, et al. Experimental definition of a clustered regularly interspaced short palindromic duplication in Escherichia coli[J]. J Mol Biol,2012,423:14-16.
[25]  Westra E R, Brouns S J. The rise and fall of CRISPRs-Dynamics of spacer acquisition and loss[J]. Mol Microbiol,2012,85:1021-1025.
[26]  Wiedenheft B, Lander G C, Zhou K, et al. Structures of the RNA-guided surveillance complex from a bacterial immune system[J]. Nature,2011,477:486-489.
[27]  Lintner N G, Frankel K A, Tsutakawa S E, et al. The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system[J]. J Mol Biol,2011,405:939-955.
[28]  [1 Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats[J]. BMC Bioinf,2007,8:172.
[29]  [1 Rousseau C, Nicolas J, Gonnet M. CRISPI: a CRISPR interactive database[J]. Bioinformatics,2009,25:3317-3318.
[30]  Bland C, Ramsey T L, Sabree F, et al. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats[J]. BMC Bioinformatics,2007,8:209.
[31]  Skennerton C T, Imelfort M, Tyson G W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data[J]. Nucleic Acids Res,2013,41:e105.
[32]  Berg Miller M E, Yeoman C J, Chia N, et al. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome[J]. Environ Microbiol,2012,14:207-227.
[33]  Willner D, Thurber R V, Rohwer F. Metagenomic signatures of 86 microbial and viral metagenomes[J]. Environ Microbiol,2009,11:1752-1766.
[34]  Lillestl R K, Shah S A, Brügger K, et al. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties[J]. Mol Microbiol,2009,72:259-272.
[35]  Deng L, Kenchappa C S, Peng X, et al. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus[J]. Nucleic Acids Res,2012,40:2470-2480.
[36]  Agari Y, Sakamoto K, Tamakoshi M, et al. Transcription profile of Thermus thermophilus CRISPR systems after phage infection[J]. J Mol Biol,2009,395:270-281.
[37]  Han D, Lehmann K, Krauss G. SSO1450-a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA[J]. FEBS Lett,2009,583:1928-1932.
[38]  Wiedenheft B, Zhou K, Jinek M, et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense[J]. Structure,2009,17:904-912.
[39]  Beloglazova N, Brown G, Zimmerman MD, et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats[J]. J Biol Chem,2008,283:20361-20371.
[40]  Beloglazova N, Petit P, Flick R, et al. Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference[J]. EMBO J,2011,30:4616-4627.
[41]  Sinkunas T, Gasiunas G, Fremaux C, et al. Cas3 is a single stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system[J]. EMBO J,2011,30:1335-1342.
[42]  Zhang J, Kasciukovic T, White M F. The CRISPR associated protein Cas4 is a 59 to 39 DNA exonuclease with an iron-sulfur cluster[J]. PLoS ONE,2013,7:e4723.
[43]  Brouns S J, Jore M M, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science,2008,321:960-964.
[44]  Jore M M, Lundgren M, van Duijn E, et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade[J]. Nat Struct Mol Biol,2011,18:529-536.
[45]  Hale C R, Zhao P, Olson S, et al. RNAguided RNA cleavage by a CRISPR RNA-Cas protein complex[J]. Cell,2009,139:945-956.
[46]  Haurwitz R E, Jinek M, Wiedenheft B, et al. Sequence- and structure specific RNA processing by a CRISPR endonuclease[J]. Science,2010,329:1355-1358.
[47]  Reeks J, Sokolowski R D, Graham S, et al. Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing[J]. Biochem J,2013,452:223-230.
[48]  Wang R, Preamplume G, Terns M P, et al. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage[J]. Structure,2011,19:257-264.
[49]  Sashital D G, Wiedenheft B, Doudna J A. Mechanism of foreign DNA selection in a bacterial adaptive immune system[J]. Mol Cell,2012,46:606-615.
[50]  Sapranauskas R, Gasiunas G, Fremaux C, et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli[J]. Nucleic Acids Res,2011,39:9275-9282.
[51]  Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337:816-821.
[52]  Garneau J E, Dupuis M E, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature,2010,468:67-71.
[53]  Hale C R, Zhao P, Olson S, et al. RNAguided RNA cleavage by a CRISPR RNA-Cas protein complex[J]. Cell,2009,139:945-956.
[54]  Han D, Krauss G. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2[J]. FEBS Lett,2009,583:771-776.
[55]  Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems[J]. Nature Rev Microbiol,2011,9:467-477.
[56]  Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature,2012,482:331-338.
[57]  Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation[J]. Annu Rev Genet,2011,45:273-297.
[58]  Tyson G W, Banfield J F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses[J]. Environ Microbiol,2008,10:200-207.
[59]  Yosef I, Goren M G, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli[J]. Nucleic Acids Res,2012,40:5569-5576.
[60]  Swarts D C, Mosterd C, van Passel M W, et al. CRISPR interference directs strand specific spacer acquisition[J]. PLoS One,2012,7:e35888.
[61]  Datsenko K A. Pougach K, Tikhonov A, et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system[J]. Nat Commun,2012,3:945.
[62]  Cady K C, Bondy-Denomy J, Heussler G E, et al. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages[J]. J Bacteriol,2012,194:5728-5738.
[63]  Lopez-Sanchez M J, Sauvage E, Da Cunha V, et al. The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome[J]. Mol Microbiol,2012,85:1057-1071.
[64]  Erdmann S, Garrett R A. Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms[J]. Mol Microbiol,2012,85:1044-1056.
[65]  Plagens A, Tjaden B, Hagemann A, et al. Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax[J]. J Bacteriol,2012,194:2491-2500.
[66]  Nam K H, Haitjema C, Liu X, et al. Cas5d protein processes pre-crRNA and assembles into a Cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas System[J]. Structure,2012,20:1574-1584.
[67]  Haurwitz R E, Jinek M, Wiedenheft B, et al. Sequence- and structure-specific RNA processing by a CRISPR endonuclease[J]. Science,2010,329:1355-1358.
[68]  Sternberg S H, Haurwitz R E, Doudna J A. Mechanism of substrate selection by a highly specific CRISPR endoribonuclease[J]. RNA,2012,18:661-672.
[69]  Haurwitz R E, Sternberg S H, Doudna J A. Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA[J]. EMBO J,2012,31:2824-2832.
[70]  Sashital D G, Wiedenheft B, Doudna J A. Mechanism of foreign DNA selection in a bacterial adaptive immune system[J]. Mol Cell,2012,46:606-615.
[71]  Westra E R, Semenova E, Datsenko K A, et al. Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition[J]. PLoS Genet,2013,9:e1003742.
[72]  Semenova E, Jore M M, Datsenko K A, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence[J]. Proc Natl Acad Sci USA,2011,108:10098-10103.
[73]  Westra E R, van Erp P B, Kunne T, et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3[J]. Mol Cell,2012,46:595-605.
[74]  Howard J A, Delmas S, Ivancic-Bace I, et al. Helicase dissociation and annealing of RNA-DNA hybrids by Escherichia coli Cas3 protein[J]. Biochem J,2011,439:85-95.
[75]  Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature,2011,471:602-607.
[76]  Garneau J E, Dupuis M E, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature,2010,468:67-71.
[77]  Deveau H, Barrangou R, Garneau J E, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus[J]. J Bacteriol,2008,190:1390-1400.
[78]  Gudbergsdottir S, Deng L, Chen Z, et al. Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers[J]. Mol Microbiol,2011,79:35-49.
[79]  Westra E R, Pul , Heidrich N, et al. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO[J]. Mol Microbiol,2010,77:1380-1393.
[80]  Mojica F J, Díez-Villaseor C. The on-off switch of CRISPR immunity against phages in Escherichia coli[J]. Mol Microbiol,2010,77:1341-13.
[81]  Agari Y, Sakamoto K, Tamakoshi M, et al. Transcription profile of thermos thermophilus CRISPR systems after phage infection[J]. J Mol Biol,2010,395:270-281.
[82]  Hatoum-Aslan A, Maniv I, Marraffini L A. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by q rule mechanism anchored at the precursor processing site[J]. Proc Natl Acad Sci USA,2011,108:21218-21222.
[83]  Carte J, Wang R, Li H, et al. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes[J]. Genes Dev,2008,22:3489-3496.
[84]  Carte J, Pfister N T, Compton M M, et al. Binding and cleavage of CRISPR RNA by Cas6[J]. RNA,2010,16:2181-2188.
[85]  Shao Y, Li H. Recognition and cleavage of a nonstructured CRISPR RNA by its processing endoribonuclease Cas6[J]. Structure,2013,21:385-393.
[86]  Wang R, Preamplume G, Terns M P, et al. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage[J]. Structure,2011,19:257-264.
[87]  Hale C R, Zhao P, Olson S, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex[J]. Cell,2009,139:945-956.
[88]  Hale C R, Majumdar S, Elmore J, et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs[J]. Mol Cell,2012,45:292-302.
[89]  Zhang J, Rouillon C, Kerou M, et al. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity[J]. Mol Cell,2012,45:303-313.
[90]  Groenen P M, Bunschoten A E, van Soolingen D, et al. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method[J]. Mol Microbiol,1993,10:1057-1065.
[91]  Brudey K, Driscoll J R, Rigouts L, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology[J]. BMC Microbiol,2006,6:23.
[92]  Snyder J C, Bateson M M, Lavin M, et al. Use of cellular CRISPR (clusters of regularly interspaced short palindromic repeats) spacer-based microarrays for detection of viruses in environmental samples[J]. Appl Environ Microbiol,2010,76:7251-7258.
[93]  Garcia-Heredia I, Martin-Cuadrado A B, Mojica FJ, et al. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses[J]. PLoS One,2012,7:e33802.
[94]  Pride D T, Salzman J, Relman D A. Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses[J]. Environ Microbiol,2012,14:2564-2576.
[95]  Barrangou R. RNA-mediated programmable DNA cleavage[J]. Nat Biotechnol,2012,30:836-838.
[96]  Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9[J]. Science,2013,339:823-826.
[97]  Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339:819-823.
[98]  Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nat Biotechnol,2013,31:233-239.
[99]  Hwang W Y, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system[J]. Nat Biotechnol,2013,31:227-229.
[100]  [1 Shen B, Zhang J, Wu H, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting[J]. Cell Res,2013,23:720-723.
[101]  [1 Cho S W, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J]. Nat Biotechnol,2013,31:230-232.
[102]  [1 Gratz S J, Cummings A M, Nguyen J N, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease[J]. Genetics,2013,194:1029-1035.
[103]  [1 Xiao A, Wang Z, Hu Y, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish[J]. Nucleic Acids Res,2013,41:e141.
[104]  [1 Di Carlo J E, Norville J E, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems[J]. Nucleic Acids Res,2013,41:4336-4343.
[105]  [1 Hou Z, Zhang Y, Propson N E, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitides[J]. Proc Natl Acad Sci USA,2013,110:15644-15649.
[106]  [1 Nekrasov V, Staskawicz B, Weige D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease[J]. Nat Biotechnol,2013,31:691-693.
[107]  [1 Bassett A R, Tibbit C, Ponting C P, et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 System[J]. Cell Rep,2013,4:220-228.
[108]  [1 Chang N, Sun C, Gao L, et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos[J]. Cell Res,2013,23:465-472.
[109]  [1 Wang H, Yang H, Shivalila C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell,2013,153:910-918.
[110]  [1 Fujii W, Kawasaki K, Sugiura K, et al. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease[J]. Nucleic Acids Res,2013,doi:10.1093/nar/gkt772.
[111]  [1 Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell,2013,152:1173-1183.
[112]  [1 Bikard D, Jiang W, Samai P, et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[J]. Nucleic Acids Res,2013,41:7429-7437.
[113]  [1 Gilbert L A, Larson M H, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell,2013,154:442-451.
[114]  [1 Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus[J]. Sci Rep,2013,3:2510.
[115]  [1 Mali P, Aach J, Stranges P B, et al. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering[J]. Nat Biotechnol,2013,31:833-838.
[116]  [1 Hsu P D, Scott D A, Weinstein J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol,2013,31:827-832.
[117]  [1 Fu Y, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotech,2013,31:822-826.
[118]  [1 Pattanayak V, Lin S, Guilinger J P, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity[J]. Nat Biotechnol,2013,31:839-843.
[119]  [1 Ran F A, Hsu P D, Lin C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell,2013,154:1380-1389.
[120]  [1 Esvelt K M, Mali P, Braff J L, et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing[J]. Nat Methods,2013,doi:10.1038/NMETH.2681.
[121]  [1 Zegans M E, Wagner J C, Cady K C, et al. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa[J]. J Bacteriol,2009,191:210-219.
[122]  [1 Cady K C, O’Toole G A. Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins[J]. J Bacteriol,2011,193:3433-3445.
[123]  [1 Viswanathan P, Murphy K, Julien B, et al. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats[J]. J Bacteriol,2007,189:3738-3750.
[124]  [1 Thony-Meyer L, Kaiser D. devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus[J]. J Bacteriol,1993,175:7450-7462.
[125]  [1 Babu M, Beloglazova N, Flick R, et al. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair[J]. Mol Microbiol,2011,79:484-502.
[126]  [1 Mali P, Esvelt K M, Church G M. Cas9 as a versatile tool for engineering biology[J]. Nat Methods,2013,10:957-963.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133