全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一维离散p-Laplacian边值问题多个解的存在性

, PP. 178-182

Keywords: 离散p-Laplacian边值问题,上下解,Brouwer度,多个解,存在性

Full-Text   Cite this paper   Add to My Lib

Abstract:

运用Brouwer度理论发展了一维离散p-Laplacian边值问题△(w(k)φp(△u(k-1)))+f(k,u(k))=0,k∈[1,T]Z,u(0)=0,u(T+1)=0的上下解方法,并获得了其多个解的存在性,其中,[1,T]Z={1,2,…,T-1,T},φp(s)=|s|p-2s,p>1,f[1,T]Z×RR连续,R=(-∞,+∞),w(k)[1,T+1]Z(0,+∞).

References

[1]  Hederson J, Thompson H B. Existence of multiple solutions for second-order discrete boundary value problems[J]. Comput Math Appl,2002,43:1239-1248.
[2]  Rachrunkova I, Rachrunek L. Solvability of discrete dirichlet problem via lower and upper functions method[J]. J Difference Equ Appl,2007,13(5):423-429.
[3]  Agarwal R P, O’Regan D. Difference equations in abstract spaces[J]. J Austral Math Soc,1998,A64:277-284.
[4]  Bereanu C, Mawhin J, Neuve L. Exitence and Multiplicity results for nonlinear second order difference equations with Dirichlet value conditions[J]. Math Bohemica,2006,2:145-160.
[5]  Wang D, Guan W. Three positive solutions of boundary value problems for p-Laplacian difference equations[J]. Comput Math Appl,2008,55:1943-1949.
[6]  Agarwal R P, Perera K, O’Regan D. Multiple positive solutions of singular discrete p-Laplacian problems via variational methods[J]. Adv Diff Eqns,2005,2(2005):93-99.
[7]  Cabada A, Iannizzotto A, Tersianc S. Multiple solutions for discrete boundary value problems[J]. J Math Anal Appl,2009,356:418-428.
[8]  Jiang D, Pang P Y H, Agrwal R P. Upper and lower solutions method and a superlinear singular discrete boundary value problem[J]. Dynamic Systems and Applications,2007,16:743-754.
[9]  [1 Jiang D, Zhang L, O’Regan D, et al. Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension p-Laplacian[J]. Archivum Mathematicum,2004,40:367-381.
[10]  [1 Zhu B, Yu J. Multiple positive solutions for resonant difference equations[J]. Math Comput Model,2009,49:1928-1936.
[11]  [1 Rachrunkov’aI, Tisdellb C C. Existence of non-spurious solutions to discrete Dirichlet problems with lower and upper solutions[J]. Nonlinear Anal,2007,67:1236-1245.
[12]  [1 Sun J, Zhao Y. Existence of positive solution for second-order nonlinear discrete system with parameter[J]. Math Comput Modelling,2005,41:493-499.
[13]  [1 Zhou G. Existence of multiple positive solutions of discrete boundary value problem[J]. Chin Quart J Math,2002,17(4):12.
[14]  [1 Hu W, Jun W. A generalized upper and lower solution method for singular discrete boundary value problem[J]. Chin Quart J Math,2007,22(2):212-219.
[15]  [1 Cheung W, Ren J, Patricia J Y W, et al. Multiple positive solutions for discrete nonlocal boundary value roblems[J]. J Math Anal Appl,2007,330:900-915.
[16]  [1 Ma R Y, Lu Y Q, Chen T L. Existence of one-signed solutions of discrete second-order periodic boundary value problems[J/OL]. Abstr Appl Anal,2012,2012,Article ID 437912. http://dx.doi.org/10.1155/2012/437912.
[17]  [1 全卫贞,王志华. 二阶非线性差分方程xn+1=f(xn,xn-1)的正解收敛性[J]. 四川师范大学学报:自然科学版,2012,35(1):68-72.
[18]  [1 李思霖. 广义Rosenau-Burgers方程的有限差分近似解[J]. 四川师范大学学报:自然科学版,2013,36(4):595-598.
[19]  Atici F M, Cabada A. Existence and uniqueness results for discrete second order periodic boundary value problem[J]. Comput Math Appl,2003,45:1417-1427.
[20]  Merdivenci F. Two positive solutions of a boundary value problem for diference equations[J]. J Difference Equ Appl,1995,1:262-270.
[21]  郑茂波,胡劲松,胡兵. 正则长波方程的一个新的差分逼近[J]. 四川师范大学学报:自然科学版,2011,35(3):305-308.
[22]  [1] Agarwal R P, O’Regan D. Boundary value problems for discrete equations[J]. Appl Math Lett,1997,10(4):83-89.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133