全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带Neumann边界条件的Extended Fisher-Kolmogorov系统的定态分歧

, PP. 188-191

Keywords: ExtendedFisher-Kolmogorov系统,Neumann边界,分歧,Lyapunov-Schmidt约化,正则性

Full-Text   Cite this paper   Add to My Lib

Abstract:

运用规范化的Lyapunov-Schmidt约化方法,得到了带Neumann边界条件的ExtendedFisher-Kolmogorov系统产生超临界和次临界分歧的完整判据,给出了分歧解的具体表达式,并进一步讨论了分歧解的正则性.

References

[1]  Bartuccelli M. On the asymptotic positivity of solutions for the extended Fisher-Kolmogorov eqaution with nonlinear diffusion[J]. Math Meth Appl Sci,2002,25:701-708.
[2]  罗宏,蒲志林. Extended Fisher-Kolmogorov系统的整体吸引子及其分形维数估计[J]. 四川师范大学学报:自然科学版,2004,27(2):135-138.
[3]  [1 钟承奎,范先令,陈文塬. 非线性泛函分析引论[M]. 兰州:兰州大学出版社,1998:155-185.
[4]  [1 马天,汪守宏. 非线性演化方程的稳定性与分歧[M]. 北京:科学出版社,2007:125-203.
[5]  [1 钟吉玉. 关于Kuramoto-Sivashinsky方程平衡解的分岔问题[J]. 四川大学学报:自然科学版,2006,43(2):277-280.
[6]  [1 周钰谦,刘倩. 一类非线性磁流变阻尼系统的局部分岔[J]. 四川大学学报:自然科学版,2008,45(2):241-244.
[7]  [1 李俐玫,魏纯辉. 基因繁殖的在平衡点(0,0)附近的定态分歧[J]. 四川大学学报:自然科学版,2011,48(5):995-1000.
[8]  [1] Coullet P, Elphick C, Repaux D. The nature of spatial chaos[J]. Phys Rev Lett,1987,58(5):431-434.
[9]  Dee G, Saarloose W. Bistable systems with propagating fronts leading to pattern formation[J]. Phys Rev Lett,1988,60(25):2641-2644.
[10]  Zimmermann W. Propagating fronts near a Lifschitz point[J]. Phys Rev Lett,1991,66(11):1546-1546.
[11]  Peletier L, Troy W. Spatial patterns described by the extended Fisher-Kolmogorov equation: periodic solutions[J]. SIAM J Math Anal,1997,28(6):1317-1353.
[12]  Tersian S, Chaparova J. Periodic and homoclinic solutions solutions of extended Fisher-Kolmogorov equations[J]. J Math Anal Appl,2001,260(2):490-506.
[13]  Rottschddotaer V, Wayne C. Existence and stability of traveling fronts in the extended Fisher-Kolmogorov equation[J]. J Diff Eqns,2001,176(2):532-560.
[14]  Kwapisz J. Uniqueness of the stationary wave for the extended Fisher-Kolmogorov eqaution[J]. J Diff Eqns,2000,165:235-253.
[15]  [1 Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[M]. New York:Springer-Verlag,1997:117-226.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133