Doric D, Kkadelburg Z, Radenovic S. Edelstein-Suzuki-type fixed point results in metric and abstract metric spaces[J]. Nonlinear Anal:TMA,2012,75:1927-1932.
[4]
Suzuki T. A generalized Banach contraction principle that characterizes metric completeness[J]. Proc Am Math Soc,2008,136:1861-1869.
[5]
Edelstein M. On fixed and periodic points under contractive mappings[J]. J London Math Soc,1962,37:74-79.
[6]
Kikkawa M, Suzuki T. Three fixed point theorems for generalized contractions with constants in complete metric spaces[J]. Nonlinear Anal,2008,69:2942-2949.
[7]
Popescu O. Two fixed point theorems for generalized contractions with constants in complete metric spaces[J]. Cent Eur J Math,2009(7):529-538.
[8]
[1 Suzuki T. A new type of fixed point theorem in metric spaces[J]. Nonlinear Anal:TMA,2009,71:5313-5317.
[9]
[1 王梓坤. 随机泛函分析引论[J]. 数学进展,1962(5):45-71.
[10]
[1 丁协平. 连续随机算子的不动点定理[J]. 数学进展,1983,12:294-298.
[11]
[1 Itoh S. Random fixed point theorems with an application to random differential equations in Banach spaces[J]. J Math Anal Appl,1979,67:261-273.
[12]
[1 Itoh S. A random fixed point theorem for a multivalued contraction mapping[J]. Pacific J Math,1977,68:85-90.