OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
交换环上的强w-投射模
, PP. 148-151
Keywords: 强w-投射模,遗传环,DW-环
Abstract:
设R是交换环,R-模P称为强w-投射模,是指对任意的无挠w-模M,都有Ext1R(P,M)=0.证明了强w-投射模或者是投射模,或者其投射维数不低于2.通过对强w-投射模的讨论,给出了半单环、DW-环和遗传环的新刻画.
References
[1] | Yin H Y, Wang F G, Zhu X S, et al. w-modules over commutative rings[J]. J Korean Math Soc,2011,48(1):207-222.
|
[2] | Wang F G. On w-projective modules and w-flat modules[J]. Algebra Colloquium,1997,4:111-120.
|
[3] | 王芳贵. 交换环与星型算子理论[M]. 北京:科学出版社,2006.
|
[4] | Rotman J J. An Introduction to Homological Algebra[M]. New York:Academic Press,1979.
|
[5] | 王芳贵. 有限表现型模与w-凝聚环[J]. 四川师范大学学报:自然科学版,2010,33(1):1-9.
|
[6] | Mimouni A. Integral domains in which each ideal is w-ideal[J]. Commun Algebra,2005,33:1345-1355.
|
[7] | [1] Fu X H, Zhu H Y, Ding N Q. On copure projective modules and copure projective dimensions[J]. Commun Algebra,2012,40(1):343-359.
|
[8] | 熊涛,王芳贵,胡葵. 余纯投射模与CPH环[J]. 四川师范大学学报:自然科学版,2013,36(2):198-201.
|
[9] | Wang F G, McCasland R L. On w-modules over strong Mori domains[J]. Commun Algebra,1997,25(4):1285-1306.
|
[10] | [1 Kasch F. Modules and Rings[M]. London:Academic Press,1982.
|
[11] | [1 赵松泉,王芳贵,陈翰林. 交换环上的w-模是平坦模[J]. 四川师范大学学报:自然科学版,2010,35(3):364-366.
|
[12] | [1 Stenstrm B. Coherent rings and FP-injective modules[J]. J London Math Soc,1970,2:323-329.
|
[13] | [1 Lucas T M. Strong Prüfer rings and the ring of finite fraction[J]. Pure Appl Algebra,1993,84:59-71.
|
[14] | [1 Lucas T M. The integral closure of R(X) and R〈X〉[J]. Commun Algebra,1997,25:847-872.
|
[15] | [1 Lucas T M. Characterizing when R[X] is integrally closed(II)[J]. Pure Appl Algebra,1989,61:49-52.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|