全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带有非线性梯度源的双重退化抛物方程解的爆破

, PP. 72-76

Keywords: 双重退化抛物方程,梯度源,爆破,生命跨度

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究一类带有非线性梯度源的双重退化抛物方程ut=div(|um|p-2um)+|u|p,(x,t)∈RN×(0,∞),其中,p>2,m>1,N≥1且q>m(p-1)+1的柯西问题的正解的爆破性质.利用能量和自相似变换方法,得到了一个爆破条件并且给出了爆破解的生命跨度的上界估计.

References

[1]  Gilding B H, Guedda M, Kersner R. The Cauchy problem for ut=△ u+| u|q\[J\]. J Math Anal Appl,2003,284:733-755.
[2]  Li Y X, Souplet P. Singlepoint gradient blowup on the boundary for diffusive HamiltonJacobi equations in planar domains\[J\]. Commun Math Phys,2010,293:499-517.
[3]  Kardar M, Parisi G, Zhang Y C. Dynamic scaling of growing interfaces\[J\]. Phys Rev Lett,1986,56:889-892.
[4]  Andreucci D. Degenerate parabolic equations with initial data measures\[J\]. Trans Am Math Soc,1997,349:3911-3923.
[5]  Shang H F. On the Cauchy problem for the singular parabolic equations with gradient term\[J\]. J Math Anal Appl,2011,378:578-591.
[6]  Arrieta J M, Bernal A R, Souplet P. Boundedness of global solutions for nonlinear parabolic equations involving gradient blowup phenomena\[J\]. Ann Sc Norm Super Pisa Cl Sci,2004,3(1):1-15.
[7]  Benachour S, Hapca S D, Lauren P. Decay estimates for a viscous HamiltonJacobi equation with homogeneous Dirichlet boundary conditions\[J\]. Asymptot Anal,2007,51:209-229.
[8]  Chen M Y, Zhao J N. On the Cauchy problem of evolution pLaplacian equation with nonlinear gradient term\[J\]. Chin Ann Math,2009,B30:1-16.
[9]  Ding J T, Guo B Z. Global existence and blowup solutions for quasilinear reactiondiffusion equations with a gradient term\[J\]. Appl Math Lett,2011,24:936-942.
[10]  Souplet P, Zhang Q S. Global solutions of inhomogeneous HamiltonJacobi equations\[J\]. J Anal Math,2006,99:355-396.
[11]  Xia L, Yao Z A. Existence, uniqueness and asymptotic behavior of solutions for a singular parabolic equation\[J\]. J Math Anal Appl,2009,358:182-188.
[12]  Zhao J N. Existence and nonexistence of solutions for ut=div(| u|p-2 u)+f( u,u,x,t)\[J\]. J Math Anal Appl,1993,172:130-146.
[13]  Chlebik M, Fila M, Quittner P. Blowup of positive solutions of a semilinear parabolic equation with a gradient term\[J\]. Dynam Contin Discrete Impuls Systems,2003,10:525-537.
[14]  Fila M. Remarks on blow up for a nonlinear parabolic equation with a gradient term\[J\]. Proc Am Math Soc,1991,111:795-801.
[15]  Hesaaraki M, Moameni A. Global existence and comparison theorem for a nonlinear parabolic equation\[J\]. Bull Austral Math Soc,2003,67:481-492.
[16]  李玉环,郑攀,穆春来. 一类带有慢衰减初值的双重退化抛物方程的解的生命跨度\[J\]. 四川师范大学学报:自然科学版,2011,34(5):740-745.
[17]  陶维安,陈波涛. 一类具有非线性边界条件的非线性抛物方程解的爆破现象\[J\]. 四川师范大学学报:自然科学版,2013,36(4):583-589.
[18]  王凡彬. 两类非线性发展方程解的爆破\[J\]. 重庆师范大学学报:自然科学版,2008,25(1):34-37..
[19]  王凡彬. 两类非线性发展方程组解的爆破和熄灭\[J\]. 重庆师范大学学报:自然科学版,2008,25(4):33-36..
[20]  Hesaaraki M, Moameni A. Blowup of positive solutions for a family of nonlinear parabolic equations in general domain in RN\[J\]. Michigan Math J,2004,52:375-389.
[21]  陈明玉. 带梯度项的pLaplacian方程正解的爆破\[J\]. 泉州师范学院学报:自然科学版,2010,28(4):1-3.
[22]  Mu C L, Li Y H, Wang Y. Life span and a new critical exponent for a quasilinear degenerate parabolic equation with slow decay initial values\[J\]. Nonlinear Anal:RWA,2010,11:198-206.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133