全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Banach空间中可数簇全拟--渐近非扩张非自映射的强收敛定理

, PP. 62-67

Keywords: 渐近非扩张非自映射,拟--渐近非扩张非自映射,全拟--渐近非扩张非自映射

Full-Text   Cite this paper   Add to My Lib

Abstract:

在具有Kadec-Klee性质的一致光滑和严格凸Banach空间中讨论了一类完全拟--渐近非扩张非自映射簇的公共不动点的迭代逼近问题,并证明了这类完全拟--渐近非扩张非自映射强收敛性.改进和推广了参考文献的结论在一致凸和一致光滑的Banach空间中渐近非扩张非自映像(或广义渐近非扩张非自映像簇)的公共不动点的迭代逼近问题.

References

[1]  Goebel K. Topics in Metric Fixed Piont Theory: Cambridge Studies in Advanced Mathematics[M]. Cambridge:Cambridge University Press,1990.
[2]  Alber Y I. Metric and Generalized Projection Operators in Banach Spaces:Properties and Applications[C]//Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York:Marcel Dekker,1996:15-50.
[3]  Kiziltunc H, Temir S. Convergence theorems by a new iteration process for a finite family of nonself asymptotically nonexpansive mappings with errors in Banach spaces[J]. Comput Math Appl,2011,61(9):2480-2489.
[4]  Chang S S. Strong convergence theorems of nonlinear operator equations for countable family of multivalued total quasi--asymptotically nonexpansive mappings with applications[J]. Fixed Point Theory Appl,2012:69.
[5]  Xu H K, Yin X M. Strong convergence theorems for nonexpansive nonself-mappings[J]. Nonlinear Anal,1995,24:223-228..
[6]  Takahashi W, Kim G E. Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces[J/OL]. Nonlinear Anal,1998(3),doi:10.1016/S0362-546X(97)00482-3.
[7]  Chidume C E, Ofoedu E U, Zegeye H. Strong and weak convergence theorems for asymptotically nonexpansive mappings[J]. J Math Anal Appl,2003,280:364-374.
[8]  Alber Y I, Reich S, Yao J C. Iterative methods for solving fixed-point problems with nonself-mappings in Banach spaces[J]. Abst Appl Anal,2003(2003):193-216.
[9]  Matsushita S, Kuroiwa D. Approximation of fixed points of nonexpansive nonself-mappings[J]. Sci Math Jpn,2003,57:171-176.
[10]  Song Y, Chen R. Viscosity approximation methods for nonexpansive nonself-mappings[J]. Math Anal Appl,2006,321:316-326.
[11]  Chang S S, Joseph Lee H W, Chan C K. A new hybrid method for solving a generalized equilibrium problem solving a variational inequality problem and obtaining common fixed points in Banach spaces with applications[J]. Nonlinear Anal:TMA,2010,73:2260-2270.
[12]  Su Y F, Xu H K, Zhang X. Strong convergence theorems for two countable families of weak relatively nonexpansive mappings and applications[J]. Nonlinear AnalTMA,2010,73:3890-3906.
[13]  Chang S S, Chan C K, Joseph Lee H W. Modified Block iterative algorithm for quasi--asymptotically nonexpansive mappings and equilibrium problem in Banach spaces[J]. Appl Math Comput,2011,217:7520-7530.
[14]  YIldIrIm I, Ozdemir M. A new iterative process for common fixed points of finite families of non-self-asymptotically non-expansive mappings[J]. Nonlinear Anal:TMA,2009,71(3/4):991-999.
[15]  Yang L P, Xie X S. Weak and strong convergence theorems of three step iteration process with errors for nonself-asymptotically nonexpansive mappings[J]. Math Comput Model,2010,52(5/6):772-780.
[16]  Wang L. Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings[J]. J Math Anal Appl,2006,323(1):550-557.
[17]  Wang L. Explicit iteration method for common fixed points of a finite family of nonself asymptotically nonexpansive mappings[J]. Comput Math Appl,2007,53(7):1012-1019.
[18]  Pathak H K, Cho Y J, Kang S M. Strong and weak convergence theorems for nonself-asymptotically perturbed nonexpansive mappings[J]. Nonlinear Anal:TMA,2009,70(5):1929-1938.
[19]  Thianwan S. Common fixed points of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space[J]. J Comput Appl Math,2009,224(2):688-695.
[20]  Qin X L, Cho S Y, Wang T Z, et al. Convergence of an implicit iterative process for asymptotically pseudocontractive nonselfmappings[J/OL]. Nonlinear Anal,2011,doi:10.1016/j.na.2011.04.031.
[21]  Hao Y, Cho S Y, Qin X. Some weak convergence theorems for a family of asymptotically nonexpansive nonself mappings[J/OL]. Fixed Point Theory Appl,2010,doi:10.1155/2010/218573.
[22]  Guo W P, Guo W. Weak convergence theorems for asymptotically nonexpansive nonself-mappings[J]. Appl Math Lett,2011,217(24):2181-2185.
[23]  Nilsrakoo W, Sajung S. Strong convergece theorems by Halpern-Mann iterations for relatively nonexpansive mappings in Banach spaces[J]. Appl Math Comput,2011,217(14):6577-6586.
[24]  Chang S S, Joseph Lee H W, Chan C K, et al. Approximation theorems for total quasi--asymptotically nonexpansive mappings with applications[J]. Appl Math Comput,2011,218:2921-2931.
[25]  Wang Z M, Su Y F, Wang D X, et al. A modified Halpern-type iteration algorithm for a family of hemi-relative nonexpansive mappings and systems of equilibrium problems in Banach spaces[J]. J Comput Appl Math,2011,235:2364-2371.
[26]  Zegeye H, Ofoedu E U, Shahzad N. Convergence theorems for equilibrium problem, variational inequality problem and countably infinite relatively quasi-nonexpansive mappings[J]. Appl Math Comput,2010,216:3439-3449.
[27]  Chang S S, Joseph Lee H W, Chan C K, et al. A modified Halpern-type iterative algorithm for totally quasi--asymptotically nonexpansive mappings with applications[J]. Appl Math Comput,2012,218(11):6489-6497.
[28]  Kamimura S, Takahashi W. Strong convergence of a proximal-type algorithm in a Banach space[J]. Appl Math Mech,2009,30:1105-1112.
[29]  雷贤才. 全渐近非扩张映象和无限族非扩张映象的强收敛定理[J]. 四川师范大学学报:自然科学版,2013,36(1):71-76.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133