全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有同宿轨的系统在扰动下的分岔及混沌行为

, PP. 131-136

Keywords: 指数二分性,分岔,同宿轨,Fredholm更替原理

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究系统的同宿轨在小扰动下的动力行为,已有很长的历史,一直以来受到人们的广泛关注,因为在同宿轨附近的动力行为非常复杂,也非常有趣.近年来,关于同宿轨的保持性与分叉,又出现了很多新的结果和新方法,比如引入截断函数、引入Brown运动等等.就在此对已有结果做一个简单的回顾和总结.

References

[1]  Chow S N, Deng B, Terman D. The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits[J]. SIAM J Math Anal,1990,21:179-204.
[2]  Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[M]. New York:Springer-Verlag,1983.
[3]  Hale J K, Spezamiglio A. Perturbation of homoclinics and subharmonics in Duffing’s equation[J]. Nonlinear Anal:TMA,1985,9:181-192.
[4]  He Z, Zhang W. Subharmonic bifurcations in a perturbed nonlinear oscillation[J]. Nonlinear Anal:TMA,2005,61:1057-1091.
[5]  Zhu C. The coexistence of subharmonics bifurcated from homoclinic orbits in singular systems[J]. Nonlinearity,2008,21:285-303.
[6]  Bulsara A R, Schieve W C, Jacobs E W. Homoclinic chaos in systems perturbed by weak Langevin noise[J]. Phys Rev,1990,A41:668-681.
[7]  Deng G, Zhu D. Homoclinic and heteroclinic orbits for near-integrable coupled nonlinear Schrdinger equations[J]. Nonlinear Analysis:TMA,2010,73:817-827.
[8]  Freddy D, Li C, Zhang Z. Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops[J]. J Diff Eqns,1997,139:146-193.
[9]  Gan S, Wen L. Heteroclinic cycles and homoclinic closures for generic diffeomorphisms[J]. J Dyn Diff Eqns,2003,15:451-471.
[10]  Han M, Hu S, Liu X. On the stability of double homoclinic and heteroclinic cycles[J]. Nonlinear Anal:TMA,2003,53:701-713.
[11]  Li W, Lu K. Sternberg theorems for random dynamical systems[J]. Commun Pure Appl Math,2005,58:941-988.
[12]  Lin X. Using Melnikov’s method to solve Silnikov’s problem[J]. Proc Roy Soc Edin,1990,A116:295-325.
[13]  Lin X, Vivancos I B. Heteroclinic and periodic cycles in a perturbed convection model[J]. J Diff Eqns,2002,182:219-265.
[14]  Liu B, Zanolin F. Boundedness of solutions of nonlinear differential equations[J]. J Diff Eqns,1998,144:66-98.
[15]  Luo G, Liang J, Zhu C. The transversal homoclinic solutions and chaos for stochastic ordinary differential equations[J/OL]. J Math Anal Appl,2013,doi:10.1016/j.jmaa.2013.10.055.
[16]  Palmer K J. Exponential dichotomies for almost periodic equation[J]. Proc Am Math Soc,1987,101:283-298.
[17]  Palmer K J, Stoffer D. Chaos in almost periodic systems[J]. Z Angew Math Phys,1989,40:592-602.
[18]  Palmer K J. Existence of transversal homoclinic points in a degenerate case[J]. Rocky Mount J Math,1990,20:1099-1118.
[19]  Wiggins S. Global bifurcations and chaos-analytical methods[J]. New York:Springer-Verlag,1988.
[20]  Zhang W. Bifurcation of homoclinics in a nonlinear oscillation[J]. Acta Math Sinica:Engl,1989,5:170-184.
[21]  Deng B. The bifurcations of countable connections from a twisted heteroclinic loop[J]. SIAM J Math Anal,1991,22:653-679.
[22]  Holmes P, Marsden J. Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom[J]. Commun Math Phys,1981,82:523-544.
[23]  Hale J K. Ordinary Differential Equations[M]. New York:Wiley-Interscience,1969.
[24]  Chow S N, Hale J K. Methods of Bifurcation Theory[M]. New York:Springer-Verlag,1982.
[25]  Palmer K J. Transversal heteroclinic orbits and Cherry’s example of a non-integrable hemiltonian system[J]. J Diff Eqns,1986,65:321-360.
[26]  Zeng W. Exponential dichotomies and transversal homoclinic orbits in degenerate cases[J]. J Dyn Diff Eqns,1995,7:521-548.
[27]  Melnikov V K. On the stability of the center for time periodic perturbations[J]. Trans Moscow Math Soc,1963,12:1-57.
[28]  Neimark J I, Silnikov L P. A case of generation of periodic motions[J]. Soviet Math Docl,1965,6:1261-1264.
[29]  Palmer K J. Exponential dichotomies and transversal homoclinic points[J]. J Diff Eqns,1984,55:225-256.
[30]  Silnikov L P. A case of the existence of a countable number of periodic motions[J]. Soviet Math Dokl,1965,6:163-166.
[31]  Silnikov L P. On a Poincaré-Birkhoff problem[J]. Math USSR-Sb,1967,3:353-371.
[32]  Chow S N, Hale J K, Mallet-Paret J. An example of bifurcation to homoclinic orbits[J]. J Diff Eqns,1980,37:551-573.
[33]  Hale J K. Bifurcation theory and applications[C]//Lecture Notes in Mathematics. Berlin:Springer-Verlag,1984,1057:106-151.
[34]  Battelli F, Lazzari C. Exponential dichotomies, heteroclinic orbits, and Melnikov functions[J]. J Diff Eqns,1990,86:342-366.
[35]  Battelli F, Palmer K J. Tangencies between stable and unstable manifolds[J]. Proc Roy Soc Edin,1992,A121:73-90.
[36]  Fekan M. Bifurcation from degenerate homoclinics in periodically forced systems[J]. Discrete Contin Dyn Syst,1999,5:359-374.
[37]  Gruendler J. Homoclionic solutions for autonomous systems in arbitrary dimension[J]. SIAM J Math Anal,1992,23:702-721.
[38]  Gruendler J. Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations[J]. J Diff Eqns,1995,122:1-26.
[39]  Gruendler J. The existence of transversal homoclinic solutions for higher order equations[J]. J Diff Eqns,1996,130:307-320.
[40]  Hale J K, Lin X B. Heteroclinic orbits for retarded functional differential equations[J]. J Diff Eqns,1986,65:175-202.
[41]  Knobloch J. Bifurcation of degenerate homoclinic orbits in reversible and conservative systems[J]. J Dyn Diff Eqns,1997,9:427-444.
[42]  Battelli F, Palmer K J. Chaos in the Duffing equation[J]. J Diff Eqns,1993,101:276-301.
[43]  Luo G, Zhu C. Transversal homoclinic orbits and chaos for functional differential equations[J]. Nonlinear Anal:TMA,2009,71:6254-6264.
[44]  Zhu C, Luo G, Shu Y. The existences of transverse homoclinic solutions and chaos for parabolic equations[J]. J Math Anal Appl,2007,335:626-641.
[45]  Awrejcewicz J, Holicke M M. Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods[M]. Singapore:World Scientific,2007.
[46]  Zhu C, Zhang W. Linearly independent homoclinic bifurcations parameterized by a small function[J]. J Diff Eqns,2007,240:38-57.
[47]  Zhu C, Luo G, Lan K. Multiple homoclinic solutions for singular differential equations[J]. Ann Inst H Poincare:AN,2010,27:917-936.
[48]  Arnold L. Random Dynamical Systems[M]. New York:Springer-Verlag,1998.
[49]  Jaeger L, Kantz H. Homoclinic tangencies and non-normal Jacobians-effects of noise in nonhyperbolic chaotic systems[J]. Physica,1997,D105:79-96.
[50]  Kennedy J, York J. Topological horseshoes[J]. Trans Am Math Soc,2001,353:3513-2530.
[51]  Lu K, Wang Q. Chaos in differential equations driven by a nonautonomous force[J]. Nonlinearity,2010,23:2935-2975.
[52]  Lu K, Wang Q. Chaos behavior in differential equations driven by a Brownian motion[J]. J Diff Eqns,2011,251:2853-2895.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133