全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

空间中变分不等式组的广义f-投影迭代算法

, PP. 44-48

Keywords: Banach空间,广义变分不等式组,广义f-投影算子,迭代算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

在Hilbert空间中,利用投影算法的收敛性来研究变分不等式组解的逼近已较广泛.但这个问题在Banach空间的研究却相对较少,主要原因是在Banach空间中投影映射缺少某些良好性质.运用广义f-投影算子,建议和分析了一类计算广义变分不等式组的近似解的迭代算法,在一致光滑和一致凸Banach空间中的一定条件下,建立解的存在性以及由算法生成的迭代序列的强收敛性定理.

References

[1]  Fan J H. Iterative schemes for approximating solutions of generalized variational inequalities in Banach spaces[J]. Nonlinear Anal:TMA,2009,70(11): 3997-4007.
[2]  Alber Y. Metric and generalized projection operators in Banach spaces: properties and applications[C]//Kartsatos A. Theory and Applications of Nonlinear Operators of Monotonic and Accretive Type. New York:Marcel Dekker,1996:15-50.
[3]  Chang S S. On Chidumes open questions and approximate solutions of multivalued strong accretive mappings in Banach spaces[J]. J Math Anal Appl,1997,216(1):94-111.
[4]  Alber Y, Yao J C. Another version of the proximal point algorithm in a Banach space[J]. Nonlinear Anal:TMA,2009,9(70):3159-3171.
[5]  Prapairat J, Somyot P. Existece of solutions for generalized variational inequality problems in Banach spaces[J]. Nonlinear Anal:TMA,2011,74(3):999-1004.
[6]  Zhang Q B. A new resolvent algorithm for solving a class of variational inclusions[J]. Math Comput Model,2012,55(7/8):1981-1986.
[7]  Abdellah B, Muhammad A N, Mohamed K, et al. A resolvent method for solving mixed variational inequalities[J]. J King Saud Univ Sci,2011,23(2):235-240.
[8]  Moudafi M. Proximal methods for a class of bilevel monotone equilibrium problems[J]. J Glob Optim,2010,47(2):287-292.
[9]  Ding X P. Existence and algorithm of solutions for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces[J]. Acta Math Sin:Eng Ser,2012,28(3):503-514.
[10]  李艳,夏福全. Banach空间中广义混合变分不等式解得迭代算法[J]. 四川师范大学学报:自然科学版,2011,34(1):13-19.
[11]  彭建文. 变分不等式的新的外梯度方法[J]. 重庆师范大学学报:自然科学版,2009, 26(4):9-16.
[12]  万波,江晓涛. 求解多值广义混合隐似平衡问题的迭代算法[J]. 四川师范大学学报:自然科学版,2011,34(2):197-200.
[13]  Alber Y. Generalized projection operators in Banach spaces: Properties and applications[C]//Proc Israel Seminar, Ariel Wsrael Funct Diff Eqns. New York:Marcel Dekker,1994,1(1):1-21.
[14]  He X F, Chen J M, He Z. Generalized projection method for a variational inequality system with different mapping in Banach Spaces[J]. Comput Math Appl,2009,58(3):1391-1396.
[15]  Chang S S, Lee Joseph W J, Chan C K, et al. A new method for solving a system of generalized nonlinear variational inequalities in Banach spaces[J]. Appl Math Comput,2011,217(15/16): 6830-6837.
[16]  Wu K Q, Huang N J. Properties of the generalized f-projection operator and its applications in Banach spaces[J]. Comput Math Appl,2007,54(3):399-406.
[17]  Wu K Q, Huang N J. The generalized f-projection operator with an application[J]. Bull Austal Math Soc,2006,73(2):307-317.
[18]  Xu H K. Inequalities in Banach spaces with applications[J]. Nonlinear Anal TMA,1991,16(2):1127-1138.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133