全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

M-矩阵与其逆的Hadamard积的最小特征值下界新的估计式

, PP. 90-97

Keywords: M-矩阵,Hadamard积,特征值,下界

Full-Text   Cite this paper   Add to My Lib

Abstract:

M-矩阵是一类有重要应用背景的特殊矩阵,生物学\,物理学和社会科学等学科中的许多问题都与M-矩阵有密切的联系.M-矩阵与其逆矩阵的Hadamard积的最小特征值的估计是M-矩阵理论及其应用中重要的问题之一,一直受到专家学者广泛的关注和研究.给出了M-矩阵与其逆矩阵的Hadamard积的最小特征值的2个新的估计式,并从理论上证明了新的估计式比现有的一些估计式更精确,算例也表明所得的估计式的确比现有估计式的估计结果更为精确.另外,这些估计式只用到矩阵的元素,因而计算简单易行.

References

[1]  卢飞龙,何希勤 . M-矩阵与其逆的Hadamard积的特征值下界\[J\]. 辽宁科技大学学报,2010,33(5):555-560.
[2]  刘新,杨晓英. M-矩阵Hadamard积最小特征值的新下界\[J\]. 重庆师范大学学报:自然科学版,2013,30(2):53-55.
[3]  Fiedler M, Markham T L. An inequality for the Hadamard product of an M-matrix and inverse M-matrix\[J\]. Linear Algebra and Its Applications,1988,101:1-8.
[4]  Yong X R, Wang Z. On a conjecture of Fiedler and Markham\[J\]. Linear Algebra and Its Applications,1999,288:259-267.
[5]  Song Y Z. On an inequality for the Hadamard product of an M-matrix and its inverse\[J\]. Linear Algebra and Its Applications,2000,305:99-105.
[6]  Yong X R. Proof of a conjecture of Fiedler and Markham\[J\]. Linear Algebra and Its Applications,2000,320:167-171.
[7]  Chen S C. A lower bound for minimum eigenvalue of the Hadamard product of matrices\[J\]. Linear Algebra and Its Applications,2004,378:159-166.
[8]  Xiang S H. On an inequality for the Hadamard product of an M-matrix or H-matrix and its inverse\[J\]. Linear Algebra and Its Applications,2003,367:17-27.
[9]  Li H B, Huang T Z, Shen S Q,et al. Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse\[J\]. Linear Algebra and Its Applications,2007,420:235-247.
[10]  Li Y Y, Chen F B, Wang D F. New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse\[J\]. Linear Algebra and Its Applications,2009,430:1423-1431.
[11]  黄荣. M-矩阵及其逆矩阵的Hadamard积最小特征值的下界估计\[J\]. 华东师范大学学报:自然科学版,2008(3):67-74.
[12]  刘新. M-矩阵与其逆矩阵的Hadamard积最小特征值的新下界\[J\]. 四川理工学院学报:自然科学版,2010,2(25):15-17.
[13]  杨晓英,刘新. M-矩阵及其逆矩阵的Hadamard积最小特征值下界的估计\[J\]. 山东大学学报:理学版,2012,47(8):64-67.
[14]  冯海亮,伍俊良. 四元素矩阵特征值的一些估计定理\[J\]. 重庆师范学院学报:自然科学版,1997,14(2):48-50.
[15]  黄廷祝,杨传胜. 特殊矩阵分析及应用\[M\]. 北京:科学技术出版社,2003.
[16]  陈景良,陈向辉. 特殊矩阵\[M\]. 北京: 清华大学出版社,2000.
[17]  Varga R S. Minimal Gerschgorin sets\[J\]. Pacific J Math,1965,15(2):719-729.
[18]  Sinkhorn R. A relationship between arbitrary positive matrices and doubly stochastic matrix\[J\]. Annals Math Stat,1964,35:876-879.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133