全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lorentzian乘积空间Mn(c)×R1中的双调和类空子流形

, PP. 37-43

Keywords: 双调和,类空子流形,Lorentzian乘积空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了Lorentzian乘积空间Mn(c)×R1中具有平行平均曲率向量的双调和类空子流形.首先,证明了一般伪黎曼空间中具有平行平均曲率向量的双调和类空子流形的一个不变方程,然后利用该方程得到了Lorentzian乘积空间Mn(c)×R1中类空子流形是双调和的充要条件,并得到了这类子流形极小的充分条件.此外,还证明了一个关于Lorentzian乘积空间Mn(c)×R1中双调和类空超曲面的不存在性结果.

References

[1]  Kobayashi S, Nomizu K. Foundations of Differential Geometry[C]//Pure and Applied Mathematics. New York:Wiley,1969:15.
[2]  Baird P, Wood J C. Harmonic Morphisms between Riemannian Manifolds[C]//London Mathematical Society Monographs. Oxford:Oxford University Press,2003:29.
[3]  Chen B Y. PseudoRiemannian Geometry, δInvariants and Applications[M]. New Jersey:World Scientific Publishing,2011.
[4]  Alencar H, do Carmo M, Tribuzy R. A Hopf theorem for ambient spaces of dimensions higher than three[J]. J Diff Geom,2010,84:1-17.
[5]  Eells J, Sampson J H. Harmonic mappings of Riemannian manifolds[J]. Am J Math,1964,86:109-160.
[6]  姜国英. 2-调和映照及其第一、第二变分公式[J]. 数学年刊,1986,A7(4):389-402.
[7]  Chen B Y. Some open problems and conjectures on submanifolds of finite type[J]. Soochow J Math,1991,17(2):169-188.
[8]  Balmu A, Montaldo S, Oniciuc C. Classification results for biharmonic submanifolds in spheres[J]. Israel J Math,2008,168:201-220.
[9]  Caddeo R, Montaldo S, Oniciuc C. Biharmonic submanifolds in spheres[J]. Israel J Math,2002,130:109-123.
[10]  Caddeo R, Montaldo S, Oniciuc C. Biharmonic submanifolds of S3[J]. Internat J Math,2001,12(8):867-876.
[11]  Balmu A, Montaldo S, Oniciuc C. Biharmonic PNMC submanifolds in spheres[J]. Ark Mat,2013,51(2):197-221.
[12]  Liu J C, Du L. Biharmonic submanifolds in δpinched Riemannian manifolds[J]. J Math Research & Expo,2010,30(5):891-896.
[13]  Montaldo S, Oniciuc C. A short survey on biharmonic maps between Riemannian manifolds[J]. Revista de La Unión Matemtica Argentina,2006,47(2):1-22.
[14]  欧阳崇珍. 伪黎曼空间型的2-调和类空子流形[J]. 数学年刊,2000,A21(6):649-654.
[15]  Zhang W. Biharmonic spacelike hypersurfaces in pseudoRiemannian space[J/OL]. arXiv:0808.1346v1,2008.
[16]  Albujer A L. New examples of entire maximal graphs in H2×R1[J]. Diff Geom Appl,2008,26(4):456-462.
[17]  Albujer A L, Alías L J. CalabiBernstein results for maximal surfaces in Lorentzian product spaces[J]. J Geom Phys,2009,59(5):620-631.
[18]  Albujer A L, Camargo F E C, de Lima H F. Complete spacelike hypersurfaces with constant mean curvature in -R×Hn[J]. J Math Anal Appl,2010,368(2):650-657.
[19]  Fetcu D, Oniciuc C, Rosenberg H. Biharmonic submanifolds with parallel mean curvature in Sn×R[J]. J Geom Anal,2013,23(4):2158-2176.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133