全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

密度泛函理论研究咪唑类硝基衍生物的性能

DOI: 10.3969/j.issn.1001-8395.2015.03.018, PP. 404-410

Keywords: 密度泛函理论,咪唑类硝基化合物,生成热,爆轰参数

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用密度泛函理论在B3P86/6-311G**水平下较系统地研究13个咪唑类硝基衍生物的C—NO2\,N—NO2键离解能(BDEs)\,撞击感度(h50)\,标准生成热(HOFs)\,爆速\,爆压等.根据键离解能确定化合物的最弱键,发现最弱键的BDE与电子能量E的比值BDEs/E与h50存在线性关系,计算出的h50值表明C取代硝基咪唑化合物比N取代硝基咪唑化合物稳定,随硝基数目的增加,化合物对撞击变得敏感.通过设计等键反应,计算得到13个咪唑类硝基衍生物的气相标准生成热.采用MonteCarlo方法计算

References

[1]  Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications[J]. J Hazard Mater,2004,A112:1-15.
[2]  李来才,蔡皖飞,张姝. 多氮含能材料的研究概述[J]. 四川师范大学学报:自然科学版,2011,34(5):729-739.
[3]  Damavarapu R, Jayasuriya K, Vladimroff T, et al. 2,4-dinitroimidazole - a less sensitive explosive and propellant made by thermal rearrangement of molten 1,4 dinitroimidazole:U. S. Patent 5387297[P]. http://www.freepatentsonline.com/5387297.html,1995.
[4]  Cho S G, Cheun Y G, Park B S. A computational study of imidazole, 4-nitroimidazole, 5-nitroimidazole, and 4, 5-dinitroimidazole[J]. J Mol Struct:Theochem,1998,432:41-53.
[5]  Cho J R, Kim K J, Cho S G. Synthesis and characterization of 1-methyl -2,4,5- trinitroimidazole (MTNI)[J]. J Hazard Mater,2002,39:141-147.
[6]  Cho S G, Cho J R, Goh E M. Synthesis and characterization of 4,4′,5,5′-Tetranitro -2,2′-Bi- 1H-imidazole (TNBI)[J]. Propel Explos Pyrotechn,2005,30:445-449.
[7]  Cho S G, Park B S. Ab Initio and density functional studies on bonding nature of the N—N bonds in 1,2,5-trinitroimidazole and 1,2,4,5-tetranitroimidazole[J]. Int J Quantum Chem,1999,72:145-154.
[8]  Rice B M, Hare J J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules[J]. J Phys Chem,2002,A106:1770-1783.
[9]  Jadhav H S, Talawar M B, Sivabalan R. Synthesis, characterization and thermolysis studies on new derivatives of 2,4,5-trinitroimidazoles:potential insensitive high energy materials[J]. J Hazard Mater,2007,143:192-197.
[10]  Cho S G, Park B S, Cho J R. Theoretical studies on the structure of 1,2,4,5-tetranitroimidazole[J]. Propel Explos Pyrotechn,1999,24:343-348.
[11]  梁晓琴. 四唑衍生物结构及性质的理论研究[J]. 四川师范大学学报:自然科学版,2008,30(2):219-223.
[12]  Linstrom P J, Mallard W G. NIST Chemistry WebBook[M]. NIST Standard Reference Database Number 69. http://webbook.nist.gov/chemistry,2005.
[13]  Chen Z X, Xiao J M, Xiao H M. Studies on heats of formation for tetrazole derivatives with density functional theory B3LYP method[J]. J Phys Chem,1999,A103:8062-8066.
[14]  Lide D R. Handbook of Chemistry and Physics[M]. Boca Raton FL:CRC Press,2005.
[15]  Nie H, Li Q, Zhao K Q. Theoretical studies on electronic absorption spectra and thermodynamic properties of crocetin dimethyl ester[J]. Chin J Org Chem,2012,32:121-126.
[16]  Politzer P, Laurence P R, Abrahmsen L. The aromatic C—NO2 bond as a site for nucleophilic attack[J]. Chem Phys Lett,1984,111:75-78.
[17]  Owens F J. Calculation of energy barriers for bond rupture in some energetic molecules[J]. J Mol Struct:Theochem,1996,370:11-16.
[18]  Johnson M A, Truong T N. High-level ab initio and density functional theory evaluation of combustion reaction energetics:NO2 and HONO elimination from dimethylnitramine[J]. J Phys Chem,1999,A103:8840-8846.
[19]  Shao J X, Cheng X L, Yang X D. Density functional calculations of bond dissociation energies for removal of the nitrogen dioxide moiety in some nitroaromatic molecules[J]. J Mol Struct:Theochem,2005,755:127-130.
[20]  Chung G S, Schimidt M W, Gordon M S. An ab initio study of potential energy surfaces for N8 isomers[J]. J Phys Chem,2000,A104:5647-5650.
[21]  Song X S, Cheng X L, Yang X D. Relationship between the bond dissociation energies and impact sensitivities of some nitro-explosives[J]. Propel Explos Pyrotechn,2006,31:306-310.
[22]  Song X S, Cheng X L, Yang X D. Correlation between the bond dissociation energies and impact sensitivities in nitramine and polynitro benzoate molecules with polynitro alkyl groupings[J]. J Hazard Mater,2008,150:317-321.
[23]  Sikder A K, Maddalla G, Agraval J P. Important aspects of behavior of organic energetic compounds:a review[J]. J Hazard Mater,2001,A84:1-26.
[24]  Jadhav H S, Talawar M B, Sivabalan R. Synthesis, characterization and thermolysis studies on new derivatives of 2,4,5-trinitroimidazoles:potential insensitive high energy materials[J]. J Hazard Mater,2007,143:192-197.
[25]  Williams C I, Whitehead M A. Aromatic nitrogen heterocyclic heats of formation:a comparison of semiempirical and ab initio treatments[J]. J Mol Struct:Theochem,1997,39:9-24.
[26]  Bozzelli J W. Thermochemistry of oxabicycloheptenes:enthalpy of formation, entropy and heat capacity[J]. J Phys Org Chem,2006,19:93-103.
[27]  Kamlet M J, Jacobs S J. A simple method for calculating detonation properties of C—H—N—O explosives[J]. J Chem Phys,1968,48:23-35.
[28]  Cho S G, Goh E M, Cho J R. Theoretical studies on molecular and explosive properties of 4,4′,5,5′-tetranitro-2,2′-bi-1H-imidazole (TNBI)[J]. Propel Explos, Pyrotech,2006,31:33-37.
[29]  Bracuti A J. Crystal structure of 4,5-dinitroimidazole (45DNI)[J]. J Chem Crystallgraphy,1998,28:367-371.
[30]  Gao H X, Ye C F, Gupta O D. 2,4,5-Trinitroimidazole-based energetic salt[J]. Chem Eur J,2007,13:3853-3860.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133