Benci V, Cerami G. Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology[J]. Calc Var PDE,1994,2:29-48.
[2]
Bartsch T, Willem M. On an elliptic equation with concave and convex nonlinearities[J]. Proc Am Math Soc,1995,123:3555-3561.
[3]
Bartsch T, Wang Z. Existence and multiplicity results for some superlinear elliptic problems on RN[J]. Commun PDE,1995,20:1725-1741.
[4]
Kirchhoff G. Mechanik[M]. Leipzig:Teubner,1883.
[5]
Alves C O, Corrêa F J S A, Ma T F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type[J]. Comput Math Appl,2005,49:85-93.
[6]
He X, Zou W. Infinitely many positive solutions for Kirchhoff-type problems[J]. Nonlinear Anal,2009,70:1407-1414.
[7]
Cheng B, Wu X. Existence results of positive solutions of Kirchhoff type problems[J]. Nonlinear Anal,2009,71:4883-4892.
[8]
Mao A, Zhang Z. Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition[J]. Nonlinear Anal,2009,70:1275-1287.
[9]
Ma T F, Mu?oz Rivera J E. Positive solutions for a nonlinear nonlocal elliptic transmission problem[J]. Appl Math Lett,2003,16:243-248.
[10]
Perera K, Zhang Z. Nontrival solutions of Kirchhoff-type problems via the Yang index[J]. J Diff Eqns,2006,221:246-255.
[11]
Zhang Z, Perera K. Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow[J]. J Math Anal Appl,2006,317:456-463.
[12]
Wu X. Existence of nontrivial solutions and high energy solutions for Schr?dinger-Kirchhoff-type equations in RN[J]. Nonlinear Anal:RWA,2011,12:1278-1287.
[13]
He X, Zou W. Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3[J]. J Diff Eqns,2012,252:1813-1834.
[14]
Nie J, Wu X. Existence and multiplicity of non-trivial solutions for Schr?dinger-Kirchhoff-type equations with radial potential[J]. Nonlinear Anal,2012,5:3470-3479.
[15]
Sun J. Infinitely many solutions for a class of sublinear Schr?dinger-Maxwell equations[J]. J Math Anal Appl,2012,390:514-522.
[16]
Zou W. Variant fountain theorems and their applications[J]. Manuscripta Math,2001,104:343-358.
[17]
Bartsch T, Pankov A, Wang Z Q. Nonlinear Schr?dinger equations with steep potential well[J]. Commun Contemp Math,2001,5:49-569.
[18]
Willem M. Minimax Theorems[M]. Boston:Birkh?user,1996.