全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维空间中次线性Schr?dinger-Kirchhoff型方程的无穷多个负能量解(英)

, PP. 46-51

Keywords: Schr?,dinger-Kirchhoff型方程,次线性,喷泉定理,变分方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

Kirchhoff型方程模型来源于经典的达朗贝尔波动方程,该模型主要用于讨论可伸缩绳横向振动的长度变化,因而对该类模型进行研究具有重要的理论和实际意义.利用变分喷泉定理讨论了一类次线性Schr?dinger-Kirchhoff型方程无穷多个负能量解的存在性,推广和改进了已有结果.

References

[1]  Benci V, Cerami G. Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology[J]. Calc Var PDE,1994,2:29-48.
[2]  Bartsch T, Willem M. On an elliptic equation with concave and convex nonlinearities[J]. Proc Am Math Soc,1995,123:3555-3561.
[3]  Bartsch T, Wang Z. Existence and multiplicity results for some superlinear elliptic problems on RN[J]. Commun PDE,1995,20:1725-1741.
[4]  Kirchhoff G. Mechanik[M]. Leipzig:Teubner,1883.
[5]  Alves C O, Corrêa F J S A, Ma T F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type[J]. Comput Math Appl,2005,49:85-93.
[6]  He X, Zou W. Infinitely many positive solutions for Kirchhoff-type problems[J]. Nonlinear Anal,2009,70:1407-1414.
[7]  Cheng B, Wu X. Existence results of positive solutions of Kirchhoff type problems[J]. Nonlinear Anal,2009,71:4883-4892.
[8]  Mao A, Zhang Z. Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition[J]. Nonlinear Anal,2009,70:1275-1287.
[9]  Ma T F, Mu?oz Rivera J E. Positive solutions for a nonlinear nonlocal elliptic transmission problem[J]. Appl Math Lett,2003,16:243-248.
[10]  Perera K, Zhang Z. Nontrival solutions of Kirchhoff-type problems via the Yang index[J]. J Diff Eqns,2006,221:246-255.
[11]  Zhang Z, Perera K. Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow[J]. J Math Anal Appl,2006,317:456-463.
[12]  Wu X. Existence of nontrivial solutions and high energy solutions for Schr?dinger-Kirchhoff-type equations in RN[J]. Nonlinear Anal:RWA,2011,12:1278-1287.
[13]  He X, Zou W. Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3[J]. J Diff Eqns,2012,252:1813-1834.
[14]  Nie J, Wu X. Existence and multiplicity of non-trivial solutions for Schr?dinger-Kirchhoff-type equations with radial potential[J]. Nonlinear Anal,2012,5:3470-3479.
[15]  Sun J. Infinitely many solutions for a class of sublinear Schr?dinger-Maxwell equations[J]. J Math Anal Appl,2012,390:514-522.
[16]  Zou W. Variant fountain theorems and their applications[J]. Manuscripta Math,2001,104:343-358.
[17]  Bartsch T, Pankov A, Wang Z Q. Nonlinear Schr?dinger equations with steep potential well[J]. Commun Contemp Math,2001,5:49-569.
[18]  Willem M. Minimax Theorems[M]. Boston:Birkh?user,1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133