全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类平面映射的不变曲线

DOI: 10.3969/j.issn.1001-8395.2015.02.011, PP. 206-210

Keywords: 不动点,迭代泛函微分方程,不变曲线,无界解

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用Banach不动点定理讨论了一类平面映射的不变曲线无界解的存在性和唯一性,推广了文献(J.DifferenceEqu.Appl.,1997,3147-168.)的结论,并进一步给出了应用的实例.

References

[1]  Abel N H. Oeuvres complétes[J]. Christiana ll,1981,Ⅱ:36-39.
[2]  Zhang W N. On the differential solutions of the iterated equation[J]. Nonlinear Anal:TMA,1990,4(15):387-398.
[3]  Deng S F. Remark on invariant curves for planar mappings[J]. Appl Math Comput,2011,217:8419-8424.
[4]  Zhang W M, Zhang W N. Continuity of iteration and approximation of iterative roots[J]. Comput Appl Math,2011,235(5):1232-1244.
[5]  Zou L, Tang H J, Tan K C, et al. Analysis of continuous attractors for 2-D linear threshold neural networks[J]. IEEE Transactions on Neural Networks,2009,20(1):175-180.
[6]  Deng S F, Li X P. Generalized homoclinic solutions for the Swift-Hohenberg equation[J]. J Math Anal Appl,2012,390(1):15-26.
[7]  Zhou X L, Zhang W N. Oscillatory and asymptotic properties of higher order nonlinear neutral difference equations[J]. Appl Math Comput,2008,203(2):679-689.
[8]  Mi Y Z, Liang Y. Multivalued solutions of an iterative equation with variable coeffcients[J]. Chin Quart J Math,2013,28(1):147-151.
[9]  Mi Y Z, Li X P, Ma L.The C1 solutions of the series-likeIterative equation with variable coefficients[J]. Fixed Point Theory and Applications,2009,2009:173028.
[10]  Li L. A note on a multivalued iterative equation[J]. Acta Mathematica Universitatis Comenianae,2009,LXXVIII:71-73.
[11]  Wang Z H, Li X P, Themistocles M R. Stability of an additive-cubic-quartic functional equation in multi-Banach spaces[J]. Abst Appl Anal,2011,Article ID:536520.
[12]  Zhang W X, Xu B. Hyers-Ulam-Rassias stability for a multivalued iterative equation[J]. Acta Math Scientia,2008,44(2):0252-9602.
[13]  Xu B, Nikodem K, Zhang W N. On a multivalued iterative equation of order n[J]. J Convex Anal,2011,18(3):673-686.
[14]  Liang Y, Li X P, Mi Y Z. The C0 solutions of the Feigenbaum-like functional equation[J]. Adv Diff Eqns,2013,ID:231.
[15]  曾莹莹,陈伟军,李林. 一类迭代差分方程连续解的全局存在性[J]. 四川师范大学学报:自然科学版,2011,34(2):158-161.
[16]  颜文勇,成和平,王科. 广义集值隐拟补问题解集的有界性及迭代算法[J]. 四川师范大学学报:自然科学版,2008,31(1):85-87.
[17]  辛邦颖. 变系数多项式型迭代方程单调递增解和凸解[J]. 四川师范大学学报:自然科学版,2010,33(4):474-478.
[18]  Kuczma M, Choczewski B, Ger R. Iterative Functional Equations[M]. Cambridge:Cambridge University Press,1990.
[19]  Mukherjea A, Ratti J S. On a functional equation involving iterates of a bijection on the unit interval[J]. Nonlinear Anal,1998,31:459-464.
[20]  Baron K, Jarczyk W. Recent results on functional equations in a single variable, perspectives and open problems[J]. Aequationes Math,2001,61:1-48.
[21]  陈丽. 一类迭代方程的集值解[J]. 数学物理学报,2008,A28(4):636-642.
[22]  林银河. 函数及函数序列的迭代估计[J]. 四川师范大学学报:自然科学版,2008,31(1):48-52.
[23]  李远秋,王中宝,丁协平. 求解广义混合平衡问题组的迭代算法[J]. 四川师范大学学报:自然科学版,2011,34(2):143-149.
[24]  袁梅,梁涛,刘爱华. 一类含广义m-增生算子的广义变分包含系统解的迭代算法[J]. 四川师范大学学报:自然科学版,2011,34(1):51-54.
[25]  刘敏. 广义平衡问题与无限族k-严格伪压缩映象的强收敛定理[J]. 四川师范大学学报:自然科学版,2011,34(1):63-69.
[26]  李燕,何明星. 非耦合迭代保次多项式映射的周期轨研究[J]. 四川师范大学学 报:自然科学版,2012,35(5):646-650.
[27]  雷贤才. 全渐近非扩张映象在CAT(0)空间的新迭代算法[J]. 四川师范大学学报:自然科学版,2013,36(6):876-880.
[28]  成凯歌. 一类有常值区间函数的迭代[J]. 四川师范大学学报:自然科学版,2014,37(1):98-102.
[29]  Wagner R. Eindeutige Losungen der Funktionalgleiehung f(x+f(x))=f(x)[J]. Elem Math,1959,16:73-78.
[30]  Nabeya R. On the functional equation f(p+qx+rf(x))=a+bx+cf(x)[J]. Aequationes Math,1970,11:199-211.
[31]  Dhombres J M. Itration lineaired dordre deux[J]. Publ Math Degreeen,1977,24:277-287.
[32]  Diamond P M. Analytic invariants of mappings of two variable[J]. J Math Anal Appl,1969,27:601-606.
[33]  McCarthy P J, Crampin M, Stephenson W. Granhs in planc invariant under an area preaerving linear map and general continuous solutions of certain quadratic functional equation[J]. Math Proc Cambridge Philosphical Soc,1985,97:261-278.
[34]  Si J G. On analytic solutions of the equation of invariant curves[C]//Comptes Rendus de l’Academie des Sciences. Serie I. Canada:Mathematique,1995,17:49-52.
[35]  Ng C T, Zhang W N. Invariant curves for planar mapping[J]. J Difference Eq Appl,1997,3:147-168.
[36]  Si J G, Zhang W N. Analytic solutions of a functional equation for invariant curves[J]. J Math Anal Appl,2001,259:83-93.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133