OALib Journal期刊
ISSN: 2333-9721
费用:99美元
奇异二阶Neumann边值问题正解的存在性
DOI: 10.3969/j.issn.1001-8395.2015.02.008 , PP. 190-193
Keywords: 正解 ,Green函数 ,存在性
Abstract:
通过研究二阶Neumann边值问题Green函数的性质,运用Schauder不动点定理获得奇异二阶Neumann边值问题{u″+a(t)u=f(t,u(t))+e(t),t∈(0,1),u’(0)=u’(1)=0正解的存在性,所得结论推广和改进了已有工作的相关结果.
References
[1] Jiang D, Liu H. Existence of positive solutions to second order Neumann boundary value problems[J]. J Math Res Exposition,2000,20:360-364.
[2] Sun J, Li W. Multiple positive solutions to second order Neumann boundary value problems[J]. Appl Math Comput,2003,146:187-194.
[3] Sun J, Li W, Cheng S. Three positive solutions for second order Neumann boundary value problems[J]. Appl Math Lett,2004,17:1079-1084.
[4] Sun Y P, Sun Y. Positive solutions for singular semipositive Neumann boundary value problems[J]. Electron J Diff Eqns,2004,2004:1-8.
[5] Li Z. Existence of positive solutions of superlinear second order Neumann boundary value problem[J]. Nonlinear Anal,2010,72:3216-3221.
[6] Chu J, Sun Y, Chen H. Positive solutions of Neumann problems with singularities[J]. J Math Anal Appl,2008,337:1267-1272.
[7] Yao Q. Multiple positive solutions of nonlinear Neumann problems with times and space singularities[J]. Appl Math Lett,2012,25:93-98.
[8] Baily P B, Shampine L F, Waltman P E. Nonlinear Two-point Boundary Value Problem[M]. 呼和浩特:内蒙古人民出版社,1985:65-80.
[9] 闫东明. 几类二阶变系数常微分Neumann边值问题正解的存在性[D]. 兰州:西北师范大学,2010.
[10] 何文魁. 奇异三阶三点边值问题正解的存在性[J]. 四川师范大学学报:自然科学版,2014,37:167-171.
[11] 刘瑞宽. 一类奇异三阶两点边值问题正解的存在性[J]. 四川师范大学学报:自然科学版,2014,37:482-486.
[12] 马如云. 二阶奇异边值问题的正解[J]. 数学学报,1998,41:1225-1230.
[13] Chu J, Zhang Z. Periodic solutions of singular differential equations with sign-changing potential[J]. Bull Aust Math Soc,2010,82:437-445.
[14] Torres P J, Zhang M. A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle[J]. Math Nachr,2003,251:101-107.
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133