Nicholson A J. An outline of the dynamics of animal populations[J]. Aust J Zool,1954,2:9-65.
[2]
Gurney W S, Blythe S P, Nisbet R M. Nicholson’s blowflies[J]. Nature,1980,287:17-21.
[3]
Kocic V L, Ladas G. Oscillation and global attractivity in the discrete model of Nicholson’s blowflies[J]. Appl Anal,1990,38:21-31.
[4]
Lenbury Y, Giang D V. Nonlinear delay differential equations involving population growth[J]. Math Comput Model,2004,40:583-590.
[5]
Liu B. Global stability of a class of Nicholson’s blowflies model with patch structure and multiple time-varying delays[J]. Nonlinear Anal:Real World Applications,2010,11(4):2557-2562.
[6]
Liu B. Permanence for a delayed Nicholson’s blowflies model with a nonlinear density-dependent mortality term[J]. Annales Polonici Mathematici,2011,101:123-129.
[7]
Liz E, Rst G. Dichotomy results for delay differential equations with negative Schwarzian derivative[J]. Nonlinear Anal:Real World Applications,2010,11(3):1422-1430.
[8]
Berezansky L, Braverman E, Idels L. Nicholson’s blowflies differential equations revisited:main results and open problems[J]. Appl Math Modelling,2010,34:1405-1417.
[9]
Smith H L. Monotone Dynamical Systems[M]. Providence RI:Math Surveys Monogr,1995.
[10]
Hale J K, Verduyn Lunel S M. Introduction to Functional Differential Equations[M]. New York:Springer-Verlag,1993.
[11]
Liu B, Gong S. Permanence for Nicholson-type delay systems with nonlinear density-dependent mor-tality terms[J]. Nonlinear Analysis:Real World Applications,2011,12(4):1931-1937.
[12]
Liu B. Global stability of a class of non-autonomous delay differential systems[J]. Proc Am Math Soc,2010,138:975-985.
[13]
Zhou H, Wang W, Zhang H. Convergence for a class of non-autonomous Nicholson’s blowflies model with time-varying coefficients and delays[J]. Nonlinear Analysis:Real World Applications,2010,11(5):3431-3436.
[14]
Yang M. Exponential convergence for a class of Nicholson’s blowflies model with multiple time-varying delays[J]. Nonlinear Analysis:Real World Applications,2011,26(12):2245-2251.
[15]
Wang W, Wang L, Chen W. Existence and exponential stability of positive almost periodic solution for Nicholson-type delay systems[J]. Nonlinear Analysis:Real World Applications,2011,28(12):1938-1949.