全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类具有非线性死亡率的时滞Nicholson 飞蝇方程的持久性

, PP. 86-89

Keywords: 变时滞,持久性,Nicholson飞蝇方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了一类具有非线性死亡率的广义时滞Nicholson飞蝇方程.在容许初值的条件下,利用解的延拓定理,首先证明了该方程的所有解是正的并且是整体存在的,然后利用微分不等式的技巧,证明了该方程所有解具有正的上下确界,获得了该方程所有解具有持久性的充分条件.由于所考虑的模型比同类文献中的模型更加广泛,从而改进和推广了已有文献中的相关结果,并给出了一个具体的例子.

References

[1]  Nicholson A J. An outline of the dynamics of animal populations[J]. Aust J Zool,1954,2:9-65.
[2]  Gurney W S, Blythe S P, Nisbet R M. Nicholson’s blowflies[J]. Nature,1980,287:17-21.
[3]  Kocic V L, Ladas G. Oscillation and global attractivity in the discrete model of Nicholson’s blowflies[J]. Appl Anal,1990,38:21-31.
[4]  Lenbury Y, Giang D V. Nonlinear delay differential equations involving population growth[J]. Math Comput Model,2004,40:583-590.
[5]  Liu B. Global stability of a class of Nicholson’s blowflies model with patch structure and multiple time-varying delays[J]. Nonlinear Anal:Real World Applications,2010,11(4):2557-2562.
[6]  Liu B. Permanence for a delayed Nicholson’s blowflies model with a nonlinear density-dependent mortality term[J]. Annales Polonici Mathematici,2011,101:123-129.
[7]  Liz E, Rst G. Dichotomy results for delay differential equations with negative Schwarzian derivative[J]. Nonlinear Anal:Real World Applications,2010,11(3):1422-1430.
[8]  Berezansky L, Braverman E, Idels L. Nicholson’s blowflies differential equations revisited:main results and open problems[J]. Appl Math Modelling,2010,34:1405-1417.
[9]  Smith H L. Monotone Dynamical Systems[M]. Providence RI:Math Surveys Monogr,1995.
[10]  Hale J K, Verduyn Lunel S M. Introduction to Functional Differential Equations[M]. New York:Springer-Verlag,1993.
[11]  Liu B, Gong S. Permanence for Nicholson-type delay systems with nonlinear density-dependent mor-tality terms[J]. Nonlinear Analysis:Real World Applications,2011,12(4):1931-1937.
[12]  Liu B. Global stability of a class of non-autonomous delay differential systems[J]. Proc Am Math Soc,2010,138:975-985.
[13]  Zhou H, Wang W, Zhang H. Convergence for a class of non-autonomous Nicholson’s blowflies model with time-varying coefficients and delays[J]. Nonlinear Analysis:Real World Applications,2010,11(5):3431-3436.
[14]  Yang M. Exponential convergence for a class of Nicholson’s blowflies model with multiple time-varying delays[J]. Nonlinear Analysis:Real World Applications,2011,26(12):2245-2251.
[15]  Wang W, Wang L, Chen W. Existence and exponential stability of positive almost periodic solution for Nicholson-type delay systems[J]. Nonlinear Analysis:Real World Applications,2011,28(12):1938-1949.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133