全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大气湍流对激光束传输特性的影响

, PP. 127-136

Keywords: 大气湍流,光强分布,光束质量,光束扩展,光谱特性,偏振特性,相干特性,等效曲率半径

Full-Text   Cite this paper   Add to My Lib

Abstract:

激光束湍流大气传输的研究对遥感、跟踪和远距离光通信,以及高功率激光武器等应用都有十分重要的意义.大气湍流会改变光束的传输特性和降低光束质量.介绍了近年来国内外激光束湍流大气传输特性研究进展,主要包括大气湍流对不同类型激光束的光强分布、光束质量、光束扩展、方向性、光谱特性、偏振特性、相干特性和等效曲率半径影响的研究进展,并介绍了主要的解析研究方法,如Rytov相位结构函数二次近似、强起伏模型和积分变换的技巧等.研究表明大气湍流对激光束传输特性的影响与激光束本身特性,如空间相干性、时间相干性、模式、光阑限制

References

[1]  Ji X L, Lü B D. Turbulence-induced quality degradation of partially coherent beams[J]. Opt Commun,2005,251(4/6):231-236.
[2]  Mahdieh M H. Numerical approach to laser beam propagation through turbulent atmosphere and evaluation of beam quality factor[J]. Opt Commun,2008,281(13):3395-3402.
[3]  Dan Y, Zhang B. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J]. Opt Express,2008,16(20):15563-15575.
[4]  Ji X L, Shao X L. Influence of turbulence on the beam propagation factor of Gaussian Schell-model array beams[J]. Opt Commun,2010,283(6):869-873.
[5]  Siegman A E. How to (Maybe) measure laser beam quality[J]. OSA Trends in Optics and Photonic Series,1998,17:184-199.
[6]  Garay A. Continuous wave deuterium fluoride laser beam diagnostic system[J]. SPIE,1998,888:17-22.
[7]  Yan H, Li S, Zhang D, et al. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere[J]. Appl Opt,2000,39(18):3023-3031.
[8]  Wen J J, Breazeale M A. A diffraction beam field expressed as the superposition of Gaussian beams[J]. J Acoust Soc Am,1988,83(5):1752-1756.
[9]  Siegman A E. New developments in laser resonators[J]. SPIE,1990,1224:2-14.
[10]  Dan Y, Zhang B. Second moments of partially coherent beams in atmospheric turbulence[J]. Opt Lett,2009,34(5):563-565.
[11]  Gbur G, Wolf E. Spreading of partially coherent beams in random media[J]. J Opt Soc Am,2002,A19(8):1592-1598.
[12]  Dogariu A, Amarande S. Propagation of partially coherent beams: turbulence-induced degradation[J]. Opt Lett,2003,28(1):10-12.
[13]  Shirai T, Dogariu A, Wolf E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence[J]. J Opt Soc Am,2003,A20(6):1094-1102.
[14]  Ji X L, Chen X L, Lü B D. Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence[J]. J Opt Soc Am,2008,A25(1):21-28.
[15]  Mao H D, Zhao D M. Second-order intensity-moment characteristics for broadband partially coherent flat-topped beams in atmospheric turbulence[J]. Opt Express,2010,18(2):1741-1755.
[16]  Siegman A E. Lasers[M]. California:University Science Books,1986.
[17]  Gbur G, Wolf E. The Rayleigh range of partially coherent beams[J]. Opt Commun,2001,199(5/6):295-304.
[18]  Ji X L. Rayleigh range of Hermite-Gaussian array beams[J]. Chin Phys Lett,2009,26(12):124210.
[19]  Dan Y Q, Zeng S G, Hao B Y, et al. Range of turbulence-independent propagation and Rayleigh range of partially coherent beams in atmospheric turbulence[J]. J Opt Soc Am,2010,A27(3):426-434.
[20]  Ji X L, Li X Q. Effective Rayleigh range of partially coherent beams propagating through the turbulent atmosphere[J]. Appl Phys,2010,B101(3):643-647.
[21]  Weber H. Propagation of higher-order intensity moments in quadratic-index media[J]. Optical and Quantum Electronics,1992,24(9):1027-1049.
[22]  Ji X L, Pu Z C. Effective Rayleigh range of Gaussian array beams propagating through atmospheric turbulence[J]. Opt Commun,2010,283(20):3884-3890.
[23]  Li X Q, Ji X L, Eyyuboglu H T, et al. Turbulence distance of radial Gaussian Schell-model array beams[J]. Appl Phys,2010,B98(2/3):557-565.
[24]  Wolf E, Collett E. Partially coherent sources which produce the same far-field intensity distribution as a laser[J]. Opt Commun,1978,25(4):293-296.
[25]  Ji X L, Li X Q. Directionality of Gaussian array beams propagating in atmospheric turbulence[J]. J Opt Soc Am,2009,26(2):236-243.
[26]  Wolf E. Invariance of the spectrum of light on propagation[J]. Phys Rev Lett,1986,56(13):1370-1372.
[27]  Pu J X, Zhang H, Nemoto S. Spectral shifts and spectral switches of partially coherent light passing through an aperture[J]. Opt Commun,1999,162(4):57-63.
[28]  Roychowdhury H, Wolf E. Invariance of spectrum of light generated by a class of quasi-homogenous sources on propagation through turbulence[J]. Opt Commun,2004,241(1/3):11-15.
[29]  Ji X L, Zhang E T, Lü B D. Changes in the spectrum of Gaussian Schell-model beams propagating through turbulent atmosphere[J]. Opt Commun,2006,259(1/3):1-6.
[30]  Ji X L. Influence of turbulence on the spectrum of diffracted chirped Gaussian pulsed beams[J]. Opt Commun,2008,281(13):3407-3413.
[31]  Wolf E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Phys Lett,2003,A312(5/6):263-267.
[32]  Salem M, Korotkova O, Dogariu A, et al. Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere[J]. Waves in Random Media,2004,14(4):513-523.
[33]  Ji X L, Pu Z C. Effects of atmospheric turbulence on the polarization of apertured electromagnetic Gaussian Schell-model beams[J]. J Opt:Pure Appl Opt,2009,A11(4):045701-7.
[34]  Wu J, Boardman A D. Coherence length of a Gaussian-Schell beam and atmospheric turbulence[J]. J Mod Opt,1991,38(7),1355-1363.
[35]  Lu W, Liu L, Sun J, et al. Change in degree of coherence of partially coherent electromagnetic beams propagating through atmospheric turbulence[J]. Opt Commun,2007,271(1):1-8.
[36]  Ji X L, Chen X W, Chen S H, et al. Influence of atmospheric turbulence on the spatial correlation properties of partially coherent flat-topped beams[J]. J Opt Soc Am,2007,24(7):3554-3563.
[37]  Ji X L, Li X Q, Chen S H, et al. Spatial correlation properties of Gaussian-Schell model beams propagating through atmospheric turbulence[J]. J Mod Opt,2008,55(6):877-891.
[38]  Ji X L, Ji G M. Spatial correlation properties of apertured partially coherent beams propagating through atmospheric turbulence[J]. Appl Phys,2008,B92(1):111-118.
[39]  Miguel A P, Javier A, Eusebio B. Complex beam parameter and ABCD law for non-Gaussian and non-spherical light beams[J]. Appl Opt,1992,31(30):6389-6402.
[40]  Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communication[J]. J Opt Soc Am,2002,A19(9):1794-1802.
[41]  Ji X L, Eyyuboglu H T, Baykal Y. Influence of turbulence on the effective radius of curvature of radial Gaussian array beams[J]. Opt Express,2010,18(7):6922-6928.
[42]  Ji X L, Li X Q. Effective radius of curvature of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence[J]. J Opt,2010,12(3):035403.
[43]  Fante R L. Progress in Optics XXII: Wave Propagation in Random Media: a Systems Approach[M]. New York:Elsevier,1985.
[44]  Andrews L C, Phillips R L. Laser Beam Propagation through Random Media[M]. 2nd ed. Washington:SPIE Press,2005.
[45]  Young C Y, Gilchrest Y V, Macon B R. Turbulence induced beam spreading of higher order mode optical waves[J]. Opt Eng,2002,41(5):1097-1103.
[46]  Cai Y J, He S L. Average intensity and spreading of an elliptical Gaussian beam propagating in a turbulent atmosphere[J]. Opt Lett,2006,31(5):568-570.
[47]  Ji X L, Ji G M. Effect of turbulence on the beam quality of apertured partially coherent beams[J]. J Opt Soc Am,2008,A25(6):1246-1252.
[48]  Ji X L, Zhang E T, Lü B D. Propagation of multi-Gaussian beams in incoherent combination through turbulent atmosphere and their beam quality[J]. J Mod Opt,2006,53(15):2111-2127.
[49]  Zhang E T, Ji X L, Lü B D. Propagation of the off-axis superposition of partially coherent beams through atmospheric turbulence[J]. Chin Phys,2009,B18(2):571-580.
[50]  Eyyuboglu H T, Baykal Y, Sermutlu E. Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere[J]. Opt Commun,2006,265(2):399-405.
[51]  Zhou G Q. Propagation of a higher-order cosh-Gaussian beam in turbulent atmosphere[J]. Opt Express,2011,19(5):3945-3951.
[52]  Cai Y J, He S L. Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere[J]. Appl Phys Lett,2006,89(4):041117-3.
[53]  Wang S C H, Plonus M A .Optical beam propagation for a partially coherent source in the turbulent atmosphere[J]. J Opt Soc Am,1979,69(9):1297-1304.
[54]  Leader J C. Atmospheric propagation of partially coherent radiation[J]. J Opt Soc Am,1978,68(2):175-185.
[55]  Serna J, Martinez-Herreor R, Mejias P M. Parametric characterization of general partially coherent beams propagating ABCD optical systems[J]. J Opt Soc Am,1991,A8(7):1094-1098.
[56]  Santis P D, Gori F, Guattari G, et al. An example of a Collett-Wolf source[J]. Opt Commun,1979,29(4):256-260.
[57]  Shirai T, Dogariu A, Wolf E. Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence[J]. Opt Lett,2003,28(8):610-612.
[58]  Ji X L, Chen X W, Lü B D. Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence[J]. J Opt Soc Am,2008,A25(1):21-28.
[59]  Yang A L, Zhang E T, Ji X L, et al. Angular spread of partially coherent Hermite-cosh-Gaussian beams propagating through atmospheric turbulence[J]. Opt Express,2008,16(12):8366~8380.
[60]  Chen X W, Ji X L. Directionality of partially coherent annular flat-topped beams propagating through atmospheric turbulence[J]. Opt Commun,2008,281(18):4765-4770.
[61]  Ji X L. The far-field directionality of partially coherent flat-topped beams propagating through atmospheric turbulence[J]. J Mod Opt,2008,55(13):2105-2115.
[62]  Ji X L, Li X Q, Ji G M. Directionality of general beams[J]. Opt Express,2008,16(23):18850-18856.
[63]  Lü S Y, Lü B D. The directionality of partially coherent beams expressed in terms of the far-field divergence angle and of the far-field radiant intensity distribution[J]. Opt Commun,2008,281(13):3514-3521.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133