全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无界区域R1上Hirota型方程的全局吸引子

, PP. 871-875

Keywords: Hirota型方程,无界区域,全局吸引子,有界吸收集,算子分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了无界区域R1上Hirota型方程解的长时间行为,首先采用能量方法证明了H1(R1)中有界吸收集的存在性,然后利用算子分解方法克服了无界区域嵌入不紧性的困难,从而证明H1(R1)强拓扑下的全局吸引子的存在性,即将Hirota型方程解的全局吸引子从有界区域推广到无界区域.

References

[1]  [1] Zhu C S, Mu C L, Pu Z L. Attractor for the nonlinear Schrdinger equation with a nonlocal nonlinear term[J]. J Dyn Control Syst,2010,16(4):585-603.
[2]  罗宏,蒲志林,周亚非. Navier-Stokes方程的渐近吸引子[J]. 广西师范大学学报:自然科学版,2009,27(2):38-41.
[3]  罗宏. Chemotaxis-Growth系统的整体吸引子[J]. 四川师范大学学报:自然科学版,2010,33(5):577-580.
[4]  徐天华. 一类具功能性反应的Prey-Predator系统的周期解与稳定性[J]. 重庆师范大学学报:自然科学版,2010,27(6):43-47.
[5]  Guo B L, Wang G L, Li D L. The attractor of the stochastic generalized Ginzburg-Landau equation[J]. Sci Chin:Math,2008,A51(5):955-964.
[6]  Jiang J, Wu H, Guo B L. Finite dimensional global and exponential attractors for a class of coupled time-dependent Ginzburg-Landau equations[J]. Sci Chin:Math,2012,A55(1):141-157.
[7]  张瑞峰,郭柏灵. Hirota型方程的全局吸引子[J]. 应用数学,2008,23(1):57-64.
[8]  Guo B L, Huo Z H. The global attractor of a damped, forced Hirota equation in H1(R1)[J]. Canad Math Bull,2010,53:295-311.
[9]  朱朝生,蒲志林. 无界区域R1上推广的B-BBM方程的整体吸引子[J]. 应用数学,2003,16(3):82-87.
[10]  [1 Ghidaglia J M, Temam R. Attractors for damped nonlinear hyperbolic equations[J]. J Math Pure Appl,1987,66:273-319.
[11]  [1 Guo B L, Li Y S. Attractor for dissipative Klein-Gordon-Schrdinger equations in R3[J]. J Diff Eqns,1997,136(2):356-377.
[12]  [1 Ball J M. Global attractors for damped semilinear wave equations, discrete and continuous dynamical systems[J]. Discrete Contin Dyn Syst,2004,10(1/2):31-52.
[13]  [1 Li Y S, Guo B L. Attractor for dissipative Zakharov equations in an unbounded domain[J]. Rev Math Phys,1997,9(6):675-687.
[14]  [1 Cazenave T, Haraux A. Introduction aux problèmes d’évolution semilinéaires[M]. Paris:Ellipses,1990.
[15]  [1 Babin A V, Vishik M I. Attractors of partial differential evolution equations in an unbounded domain[J]. Proc Royal Soc Edin,1990,A116:221-243.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133